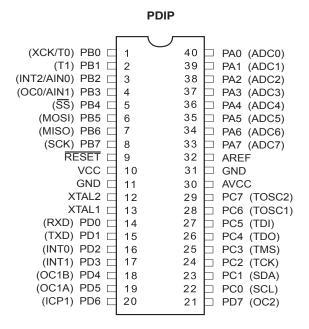
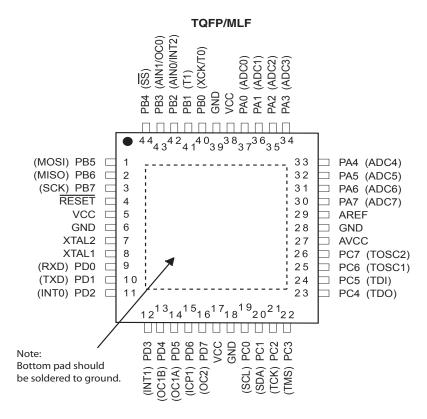
Features

- High-performance, Low-power Atmel®AVR® 8-bit Microcontroller
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single-clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16MIPS Throughput at 16MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory segments
 - 32KBytes of In-System Self-programmable Flash program memory
 - 1024Bytes EEPROM
 - 2KByte Internal SRAM
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 Compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Four PWM Channels
 - 8-channel, 10-bit ADC
 - 8 Single-ended Channels
 - 7 Differential Channels in TQFP Package Only
 - 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
 - Byte-oriented Two-wire Serial Interface
 - Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated RC Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
- I/O and Packages
 - 32 Programmable I/O Lines
 - 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF
- Operating Voltages
 - 2.7 5.5V
- Speed Grades
 - 0 16MHz
- Power Consumption at 1 MHz, 3V, 25°C
 - Active: 0.6mAIdle Mode: 0.2mA
 - Power-down Mode: < 1μA

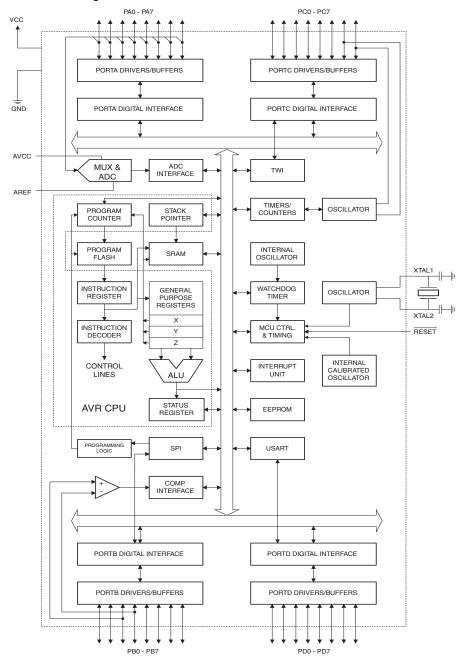
8-bit **AVR**® Microcontroller with 32KBytes In-System Programmable Flash


ATmega32A


Summary

1. Pin Configurations

Figure 1-1. Pinout ATmega32A



2. Overview

The Atmel®AVR® ATmega32A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega32A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The Atmel®AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega32A provides the following features: 32K bytes of In-System Programmable Flash Program memory with Read-While-Write capabilities, 1024 bytes EEPROM, 2K byte SRAM, 32 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundaryscan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, Internal and External Interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain (TQFP package only), a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next External Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel's high density nonvolatile memory technology. The Onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega32A is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

The ATmega32A AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

2.2 Pin Descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

2.2.3 Port A (PA7:PA0)

Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers have sym-

metrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

2.2.4 Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega32A as listed on page 59.

2.2.5 Port C (PC7:PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

The TD0 pin is tri-stated unless TAP states that shift out data are entered.

Port C also serves the functions of the JTAG interface and other special features of the ATmega32A as listed on page 62.

2.2.6 Port D (PD7:PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega32A as listed on page 64.

2.2.7 **RESET**

Reset Input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 27-1 on page 299. Shorter pulses are not guaranteed to generate a reset.

2.2.8 XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.2.9 XTAL2

Output from the inverting Oscillator amplifier.

2.2.10 AVCC

AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

2.2.11 AREF

AREF is the analog reference pin for the A/D Converter.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F)	SREG	ı	Т	Н	S	V	N	Z	С	8
\$3E (\$5E)	SPH	-	-	_	_	SP11	SP10	SP9	SP8	11
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	11
\$3C (\$5C)	OCR0	Timer/Counter	0 Output Compar	e Register						86
\$3B (\$5B)	GICR	INT1	INT0	INT2	_	_	_	IVSEL	IVCE	48, 71
\$3A (\$5A)	GIFR	INTF1	INTF0	INTF2	-	-	-	-	-	71
\$39 (\$59)	TIMSK	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	87, 117, 136
\$38 (\$58)	TIFR	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0	87, 117, 136
\$37 (\$57)	SPMCR	SPMIE	RWWSB	-	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	264
\$36 (\$56)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	202
\$35 (\$55)	MCUCR	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	36, 69
\$34 (\$54)	MCUCSR	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	42, 70, 251
\$33 (\$53)	TCCR0	FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00	84
\$32 (\$52)	TCNT0	Timer/Counter	· ,							86
\$31 ⁽¹⁾ (\$51) ⁽¹⁾	OSCCAL		bration Register							32
\$30 (\$50)	OCDR SFIOR	On-Chip Debu ADTS2	ADTS1	ADTS0	_	ACME	PUD	PSR2	PSR10	232 66,90,137,206,226
\$30 (\$30) \$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10	112
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	COMIDI	WGM13	WGM12	CS12	CS11	CS10	114
\$2D (\$4D)	TCNT1H		1 – Counter Regi	ster High Ryte	W OIN 13	VVOIVITZ	0012	0011	0010	116
\$2D (\$4D) \$2C (\$4C)	TCNT1L		1 – Counter Regi							116
\$2B (\$4B)	OCR1AH		1 – Output Comp		gh Byte					116
\$2A (\$4A)	OCR1AL		1 – Output Comp		• •					116
\$29 (\$49)	OCR1BH		1 – Output Comp		•					116
\$28 (\$48)	OCR1BL	Timer/Counter	1 – Output Comp	are Register B Lo	ow Byte					116
\$27 (\$47)	ICR1H	Timer/Counter	1 – Input Capture	Register High By	/te					116
\$26 (\$46)	ICR1L	Timer/Counter	1 – Input Capture	Register Low By	te					116
\$25 (\$45)	TCCR2	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	132
\$24 (\$44)	TCNT2	Timer/Counter	2 (8 Bits)							135
\$23 (\$43)	OCR2	Timer/Counter	2 Output Compar	e Register						135
\$22 (\$42)	ASSR	-	-	-	-	AS2	TCN2UB	OCR2UB	TCR2UB	135
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	43
\$20 ⁽²⁾ (\$40) ⁽²⁾	UBRRH	URSEL	-	-	-			R[11:8]		171
` '	UCSRC	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	170
\$1F (\$3F)	EEARH			_	-	-	-	EEAR9	EEAR8	20
\$1E (\$3E)	EEARL		ress Register Lov	v Byte						20
\$1D (\$3D)	EEDR	EEPROM Data	a Register I			FEDIE	FEANAGE	FEME	FEDE	21
\$1C (\$3C) \$1B (\$3B)	EECR	PORTA7	PORTA6	PORTA5	PORTA4	EERIE DODTA2	EEMWE	EEWE DODTA1	EERE	21 66
\$1B (\$3B) \$1A (\$3A)	PORTA DDRA	DDA7	DDA6	DDA5	DDA4	PORTA3 DDA3	PORTA2 DDA2	PORTA1 DDA1	PORTA0 DDA0	66
\$19 (\$39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	66
\$18 (\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	67
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	67
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	67
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	67
\$14 (\$34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	67
\$13 (\$33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	67
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	67
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	67
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	68
\$0F (\$2F)	SPDR	SPI Data Reg	ister							145
\$0E (\$2E)	SPSR	SPIF	WCOL	_	_	_	_	_	SPI2X	145
\$0D (\$2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	143
\$0C (\$2C)	UDR	USART I/O D	1		•	T.			•	167
\$0B (\$2B)	UCSRA	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	168
\$0A (\$2A)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	169
\$09 (\$29)	UBRRL		Rate Register Lo			T	T	T	1	171
\$08 (\$28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	206
\$07 (\$27)	ADMUX	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	222
\$06 (\$26)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	224
\$05 (\$25)	ADCH	· ·	gister High Byte							225
\$04 (\$24)	ADCL	· ·	gister Low Byte	- · ·						225
\$03 (\$23)	TWDR		al Interface Data F		T14/4 C	T14/4 C	T14/4 :	T14/4 =	T.**00=	203
\$02 (\$22)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	204

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$01 (\$21)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	203
\$00 (\$20) TWBR Two-wire Serial Interface Bit Rate Register						201				

Notes:

- 1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debugger specific documentation for details on how to use the OCDR Register.
- 2. Refer to the USART description for details on how to access UBRRH and UCSRC.
- 3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 4. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

6. Instruction Set Summary

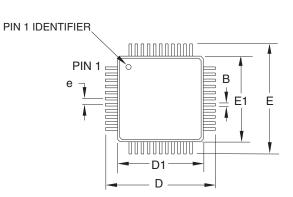
ADD	Mnemonics	Operands	Description	Operation	Flags	#Clocks
ADM	ARITHMETIC AND I	LOGIC INSTRUCTION	S	·		
ADM RBJ.R. And Immediate to Word RBH-RBI-RBHBH K Z.C.N.VS 2 SUB RB, RP Subtent no Register RB c. RBI R Z.C.N.VS 1 SUB RB, R Subtent on Constant from Register RB c. RBI R*C.C Z.C.N.VS 1 SBC RB, R Subtent with Carly Constant from Reg RB c. RBI K*C.C Z.C.N.VS 1 SBC RB, K Subtent with Carly Constant from Reg RB c. RBI K*C.C Z.C.N.VS 1 SBC RB, K Subtent with Carly Constant from Reg RB c. RBI K*C.C Z.C.N.VS 1 AND RB, R Logical AND Registers RB c. RBI K*C.C Z.C.N.VS 1 OR RB, R Logical AND Registers RB c. RBI K*C Z.D.V.V 1 OR RB, R Logical AND Registers RB c. RBI K*R Z.D.V.V 1 COM RB, R Evolution CR Register RB c. RBI K*R Z.D.V.V 1 ECO RB, R Evolution CR Register RB c. RBI K*R Z.D.V.V 1 COM<	ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADDITION	ADC		•	1	Z,C,N,V,H	1
SUBSIDER Fig. K Subtract Vertice True Registers Rid - Fig. K Z.C.N.V.H 1	ADIW	RdI,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SEC	SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SBOW Rd K Subtract with Carry Constant from Reg Rd - Rd - K - C ZCNV 1	SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBW Rd.K Subtract Immediate from Word Ren.Rd Rob.Rd K 2C.NVS 2	SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
AND	SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
ANDI Rg. K Logical AND Register and Constant Rg ← Rg + K ZNV 1 OR Rg. R Logical OR Registers Rg ← Rg + Wr ZNV 1 CR Rg. R Logical OR Registers Rg ← Rg + Wr ZNV 1 EGR Rg ← Rg + Rg ZNV 1 2 COM Rg One a Complement Rg + Rg + Rg ZNV 1 NGG Rg One a Complement Rg + Rg + Rg + Rg ZC, NLV 1 SRG Rg One a Complement Rg +	SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
OR Re, R Logical OR Registers Ref - Rev Ver Z.N.V 1 DR Re, K Logical OR Registers Rd + Re 0 Fr Z.N.V 1 ECR Re, R Exclusive OR Registers Rd + Re 0 Fr Z.N.V 1 COM Rd Cone S. Complement Rd + Re 0 Fr Z.N.V 1 NEG Rd Tvon Complement Rd + S00 − Rd Z.C.N.VH 1 SR Rd K Clar Reflet) Register Rd + Rd + S00 − Rd Z.C.N.VH 1 CR Rd K Clar Reflet) Register Rd + Rd + SEF − Kr Z.N.V 1 CR Rd K Clar Register Rd + Rd + Rd + SEF − Kr Z.N.V 1 DEC Rd December Rd + Rd + Rd + Rd + Rd Z.N.V 1 TST Rd December Rd + Rd + Rd + Rd + Rd Z.N.V 1 CR Rd December Rd + Rd	AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ORI Rel. K Logical OR Register and Content Rel - Rel vs Z.N.V 1 EOR Rel. Rel. Exclusive OR Registers Rel + SFF - Rel Z.N.V 1 COM Rel. One's Complement Rel + SFF - Rel Z.C.N.V 1 NRG Rel. One's Complement Rel + SFF - Rel Z.C.N.V 1 SIR Rel. Set Bills (s) Register Rel + Rel vs Z.N.V 1 SIR Rel. Set Bills (s) Register Rel + Rel vs Z.N.V 1 ING Rel. Clear Register Rel + Rel - 1 Z.N.V 1 ING Rel. Test for Zero or Minus Rel + Rel - 1 Z.N.V 1 CLR Rel. Test for Zero or Minus Rel + Rel - 1 Z.N.V 1 CLR Rel. Test for Zero or Minus Rel + Rel - 1 Z.N.V 1 SER Rel. Test for Zero or Minus Rel + Rel - Rel - 1 Z.N.V 1 SER Rel. Multips Stage of Minus Rel	ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
EOR	OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \ v \ Rr$	Z,N,V	1
COM Rd Ones Complement Rd + SFF - Rd Z,C,N,V 1 NRG Rd Navs Complement Rd + Sd × K Z,C,N,V 1 SBR Rd,K Set Rety in Register Rd + Rd v K Z,N,V 1 CRP Rd Local Set	ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \ v \ K$	Z,N,V	1
NEG Rd Two Complement Rd ← SQ − Rd Z, C, N, M 1 SBR Rd AK Set Bitty in Register Rd ← Rd × (SF + K) Z, N, M 1 CRR Rd AK Clear Bitty in Register Rd ← Rd + (SF + K) Z, N, M 1 INC Rd Increment Rd ← Rd + Rd + Rd Z, N, M 1 DEC Rd Decement Rd ← Rd + Rd Z, N, M 1 CIR Rd Test for Zeo or Minus Rd ← Rd + Rd Z, N, M 1 CIR Rd Test for Zeo or Minus Rd + Rd + Rd Z, N, M 1 SER Rd Test for Zeo or Minus Rd + Rd Z, N, M 1 SER Rd Set Register Rd + SFF Mone Z, N, M 1 MULS Rd, Rr Multiply Singend R1 RD + Rd x Rr Z, C 2 2 MULSU Rd, Rr Fractional Multiply Signed R1 RD + Rd x Rr Z, C 2 2 FMULS Rd, Rr Fractional Multiply Sig	EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
SBR	COM	Rd	One's Complement	$Rd \leftarrow \$FF - Rd$	Z,C,N,V	1
Dec Rid Clase Bits) in Register Rid + R	NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
NC	SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
DEC Rd Decrement Rd ← Rd ≈ Rd ZNV 1 STT Rd Test for zaro or Minus Rd ← Rd ≈ Rd ZNV 1 CLR Rd Clear Register Rd ← Rd ≈ Rd ZNV 1 SER Rd Set Register Rd ∞ Set Fr None 1 MULS Rd, Rr Multiply Unsigned R1 R0 ← Rd x Rr Z.C 2 MULS Rd, Rr Multiply Signed with Unsigned R1 R0 ← Rd x Rr Z.C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1 R0 ← Rd x Rr) ≪1 Z.C 2 FMULS Rd, Rr Fractional Multiply Signed R1 R0 ← Rd x Rr) ≪1 Z.C 2 FMULS Rd, Rr Fractional Multiply Signed R1 R0 ← Rd x Rr) ≪1 Z.C 2 FMULS Rd, Rr Fractional Multiply Signed R1 R0 ← Rd x Rr) ≪1 Z.C 2 FMULS Rd, Rr Fractional Multiply Signed R1 R0 ← Rd x Rr) ≪1 Z.C 2 FMULS Rd, Rr Fractional Multiply Signed	CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$	Z,N,V	1
TST Rd Test for Zero or Minus Rd ← Rd ⊕ Rd ZNV 1 CR Rd Clear Register Rd ← Rd ⊕ Rd 2.NV 1 SER Rd Set Register Rd ← Rd ⊕ Rd 2.NV 1 MUL Rd, Rr Multiply Unsigned R1 RO ← Rd x Rr ZC 2 MULSU Rd, Rr Multiply Signed with Unsigned R1 RO ← Rd x Rr ZC 2 MULSU Rd, Rr Fractional Multiply Unsigned R1 RO ← (Rd x Rr) ≪ 1 ZC 2 FMULS Rd, Rr Fractional Multiply Signed R1 RO ← (Rd x Rr) ≪ 1 ZC 2 FMULS Rd, Rr Fractional Multiply Signed with Unsigned R1 RO ← (Rd x Rr) ≪ 1 ZC 2 FMULS Rd, Rr Fractional Multiply Signed with Unsigned R1 RO ← Rd x Rr) ≪ 1 ZC 2 EMULS Rd, Rr Fractional Multiply Signed with Unsigned R1 RO ← Rd x Rr) ≪ 1 ZC 2 EMULS Rd, Rr Fractional Multiply Signed with Unsigned R1 RD ← CRd x Rr) ≪ 1 ZC 2	INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
CLR Rd Clear Register Rd ← RSF 9R ZN.V 1 MUL Rd, R Mothly Unsigned R1 NO ← Rd x Rr ZC 2 MULS Rd, Rr Multply Signed R1 NO ← Rd x Rr ZC 2 MULSU Rd, Rr Multply Signed with Unsigned R1 NO ← Rd x Rr ZC 2 FMUL Rd, Rr Fractional Multiply Signed R1 NO ← Rd x Rr ZC 2 FMULS Rd, Rr Fractional Multiply Signed with Unsigned R1 NO ← (Rd x Rr) ≪ 1 ZC 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1 NO ← (Rd x Rr) ≪ 1 ZC 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1 NO ← (Rd x Rr) ≪ 1 ZC 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1 NO ← (Rd x Rr) ≪ 1 ZC 2 EMARCH TONNE Rd, Rr Fractional Multiply Signed with Unsigned R1 NO ← (Rd x Rr) ≪ 1 ZC 2 LIMP k Resister Jump RC ← E Z No No ← Rd x Rr ZC <td>DEC</td> <td>Rd</td> <td>Decrement</td> <td>Rd ← Rd – 1</td> <td>Z,N,V</td> <td>1</td>	DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
SER	TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
MULL Rd, Rr Multiply Unsigned Rt:R0 ← Rd x Rr Z,C 2	CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
MULSU Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z.C 2	SER	Rd	Set Register	Rd ← \$FF	None	1
MULSU	MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMULS Rd, Rr	MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMULS Rd, Rr	MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMULSU Rd, Rr	FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
RANCH INSTRUCTIONS	FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2
RJMP	FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
MMP	BRANCH INSTRUC	TIONS				
JMP	RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
RCALL K Relative Subroutine Call PC ← PC + K + 1 None 3 ICALL Indirect Call to (Z) PC ← Z None 3 ICALL K Direct Subroutine Call PC ← K None 3 CALL K Direct Subroutine Call PC ← K None 4 RET Subroutine Return PC ← Stack None 4 RET Interrupt Return PC ← Stack None 4 RETI Interrupt Return PC ← Stack None 4 RETI Interrupt Return PC ← Stack I 4 CPSE Rd,Rr Compare Skip if Equal If (Rd = Rr) PC ← PC + 2 or 3 None 17/2/3 CP Rd,Rr Compare With Carry Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare With Carry Rd − Rr Z, N,V,C,H 1 CPC Rd,Kr Compare With Carry Rd − Rr − C Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared Rd − Rr Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared If (Rr(D)=D) PC ← PC + 2 or 3 None 17/2/3 SBRS Rr, b Skip if Bit in NO Register Cleared If (Rr(D)=D) PC ← PC + 2 or 3 None 17/2/3 SBIS P, b Skip if Bit in NO Register Cleared If (P(D)=D) PC ← PC + 2 or 3 None 17/2/3 SBRS R, k Branch if Status Flag Set If (P(D)=D) PC ← PC + 2 or 3 None 17/2/3 SBRS S, k Branch if Status Flag Set If (SREG(s) = 1) then PC ← PC + k + 1 None 17/2 BRBC S, k Branch if Status Flag Cleared If (SREG(s) = 0) then PC ← PC + k + 1 None 17/2 BRNE K Branch if Carry Set If (C=0) then PC ← PC + k + 1 None 17/2 BRSH K Branch if Carry Cleared If (C=0) then PC ← PC + k + 1 None 17/2 BRSH K Branch if Carry Cleared If (C=0) then PC ← PC + k + 1 None 17/2 BRSH K Branch if Minus If (N = 1) then PC ← PC + k + 1 None 17/2 BRSH K Branch if Greater or Equal, Signed If (N = 0) then PC ← PC + k + 1 None 17/2 BRSH K Branch if Half Carry Flag Set If (P(D)=D) then PC ← PC + K + 1 None 17/2 BRHC K Branch if Half Carry Flag Set If (P(D)=D) then PC ← PC + K + 1 None 17/2 BRHC K Branch if Half Car	IJMP		Indirect Jump to (Z)	PC ← Z	None	2
ICALL Indirect Call to (Z) PC ← Z None 3 CALL k Direct Subroutine Call PC ← k None 4 RET Subroutine Return PC ← Stack None 4 RETI Interrupt Return PC ← Stack I 4 RETI Interrupt Return PC ← Stack I 4 CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 11/2/3 CP Rd,Rr Compare Rd – Rr Z, N,V,C,H 1 CPC Rd,Rr Compare With Carry Rd – Rr – C Z, N,V,C,H 1 CPI Rd,K Compare Register With Immediate Rd – K Z, N,V,C,H 1 CPI Rd,K Compare Register With Immediate Rd – K Z, N,V,C,H 1 CPI Rd,K Compare Register With Immediate Rd – K Z, N,V,C,H 1 CPI Rd,K Compare Register With Immediate Rd – K Z, N,V,C,H 1 CPI Rd,Rr	JMP	k	Direct Jump	$PC \leftarrow k$	None	3
CALL k Direct Subroutine Call PC ← k None 4 RET Subroutine Return PC ← Stack None 4 RETI Interrupt Return PC ← Stack 1 4 CPSE Rd.Rr Compare, Skip if Equal if (Rd = Rn PC ← PC + 2 or 3 None 11/2/3 CP Rd.Rr Compare Rd − Rr Z, N.V.C.H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N.V.C.H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N.V.C.H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 11/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 11/2/3 SBIS P, b Skip if Bit in VR Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 11/2/3 SBIS P, b Skip if Bit in VR Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 11/2/3 SBIS P, b	RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
RET	ICALL		Indirect Call to (Z)	PC ← Z	None	3
RETI	CALL	k	Direct Subroutine Call	$PC \leftarrow k$	None	4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3 CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in IR Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register is Set if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 1) then PC ← PC + k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared	RET		Subroutine Return	PC ← Stack	None	4
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBRS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1/2/3 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1/2 BRVE k Branch if Carry Set	RETI		Interrupt Return	PC ← Stack	1	4
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in I/O Register I Cleared if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Cleared if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBRS s, k Branch if Status Flag Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBC s, k Branch if Status Flag Set if (SREG(s)=1) then PC ← PC+k+1 None 1/2/2 BRBC s, k Branch if Status Flag Set if (SREG(s)=0) then PC ← PC+k+1 None 1/2 BRNE k Branch if Status Flag Cleared if (Z = 0) then PC ← PC+k+1 None 1/2 BRNE k Branch	CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CPI Rd,K Compare Register with Immediate Rd – K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Vot Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Vot Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Vot Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBC s, k Branch if Status Flag Set if (SEG(s) = 0) then PC ← PC + k + 1 None 1/2 BREQ	CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register Cleared if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIS Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRD Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + k + 1 None 1/2 BRBC S, k Branch if Status Flag Set if (P(b)=1) PC ← PC + k + 1 None 1/2 BRCS k	CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1 / 2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1 / 2 BREQ k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1 / 2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2 BRNE k Branch if Oth Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2 BRCC k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2 BRSH<	CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1 / 2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1 / 2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1 / 2 BRCQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2 BRCC k Branch if Carry Set if (C = 0) then PC ← PC + k + 1 None 1 / 2 BRSH k Branch if Garry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2 BRSH <t< td=""><td>SBRC</td><td>Rr, b</td><td>Skip if Bit in Register Cleared</td><td>if (Rr(b)=0) PC ← PC + 2 or 3</td><td>None</td><td>1/2/3</td></t<>	SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Set if (C = 0) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Minus if (N	SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k+1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k+1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 0) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V = 0) then PC ←	SBIC		Skip if Bit in I/O Register Cleared			
BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BREQkBranch if Equalif (Z = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRNEkBranch if Not Equalif (Z = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRCSkBranch if Carry Setif (C = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRCCkBranch if Carry Clearedif (C = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRSHkBranch if Same or Higherif (C = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRLOkBranch if Lowerif (C = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRMIkBranch if Minusif (N = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRPLkBranch if Plusif (N = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRGEkBranch if Greater or Equal, Signedif (N \oplus V = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRLTkBranch if Less Than Zero, Signedif (N \oplus V = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif (H = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif (H = 0) then $PC \leftarrow PC + k + 1$ None $1/2$	SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BREQkBranch if Equalif $(Z = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRNEkBranch if Not Equalif $(Z = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRCSkBranch if Carry Setif $(C = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRCCkBranch if Carry Clearedif $(C = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRSHkBranch if Same or Higherif $(C = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRLOkBranch if Lowerif $(C = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRMIkBranch if Minusif $(N = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRPLkBranch if Plusif $(N = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRGEkBranch if Greater or Equal, Signedif $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRLTkBranch if Less Than Zero, Signedif $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif $(H = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif $(H = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$	BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRNE k Branch if Not Equal if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRCS k Branch if Carry Set if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRCC k Branch if Carry Cleared if $(C = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRSH k Branch if Same or Higher if $(C = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRLO k Branch if Lower if $(C = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRMI k Branch if Minus if $(C = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRPL k Branch if Plus if $(N = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRGE k Branch if Greater or Equal, Signed if $(N = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRLT k Branch if Less Than Zero, Signed if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRHS k Branch if Half Carry Flag Set if $(H = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRHC k Branch if Half Carry Flag Cleared if $(H = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2	BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BRNEkBranch if Not Equalif $(Z=0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRCSkBranch if Carry Setif $(C=1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRCCkBranch if Carry Clearedif $(C=0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRSHkBranch if Same or Higherif $(C=0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRLOkBranch if Lowerif $(C=1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRMIkBranch if Minusif $(N=1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRPLkBranch if Plusif $(N=0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRGEkBranch if Greater or Equal, Signedif $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRLTkBranch if Less Than Zero, Signedif $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif $(H = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif $(H = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$			i		1	1/2
BRCSkBranch if Carry Setif (C = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRCCkBranch if Carry Clearedif (C = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRSHkBranch if Same or Higherif (C = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRLOkBranch if Lowerif (C = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRMIkBranch if Minusif (N = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRPLkBranch if Plusif (N = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRGEkBranch if Greater or Equal, Signedif (N \oplus V = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRLTkBranch if Less Than Zero, Signedif (N \oplus V = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif (H = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif (H = 0) then $PC \leftarrow PC + k + 1$ None $1/2$	BRNE	k	Branch if Not Equal		None	1/2
BRCCkBranch if Carry Clearedif $(C=0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRSHkBranch if Same or Higherif $(C=0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRLOkBranch if Lowerif $(C=1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRMIkBranch if Minusif $(N=1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRPLkBranch if Plusif $(N=0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRGEkBranch if Greater or Equal, Signedif $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRLTkBranch if Less Than Zero, Signedif $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif $(H = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif $(H = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$		k	Branch if Carry Set			
BRSHkBranch if Same or Higherif $(C=0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRLOkBranch if Lowerif $(C=1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRMIkBranch if Minusif $(N=1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRPLkBranch if Plusif $(N=0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRGEkBranch if Greater or Equal, Signedif $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRLTkBranch if Less Than Zero, Signedif $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif $(H = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif $(H = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$	BRCC	k	•	· ` '	1	
BRLOkBranch if Lowerif $(C = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRMIkBranch if Minusif $(N = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRPLkBranch if Plusif $(N = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRGEkBranch if Greater or Equal, Signedif $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRLTkBranch if Less Than Zero, Signedif $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif $(H = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif $(H = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$	BRSH	k	Branch if Same or Higher			1/2
BRMIkBranch if Minusif (N = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRPLkBranch if Plusif (N = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRGEkBranch if Greater or Equal, Signedif (N \oplus V = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRLTkBranch if Less Than Zero, Signedif (N \oplus V = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif (H = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif (H = 0) then $PC \leftarrow PC + k + 1$ None $1/2$		k	· · · · · · · · · · · · · · · · · · ·	· ` '	1	
BRPLkBranch if Plusif (N = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRGEkBranch if Greater or Equal, Signedif (N \oplus V = 0) then $PC \leftarrow PC + k + 1$ None $1/2$ BRLTkBranch if Less Than Zero, Signedif (N \oplus V = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif (H = 1) then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif (H = 0) then $PC \leftarrow PC + k + 1$ None $1/2$			Branch if Minus		1	
BRGE k Branch if Greater or Equal, Signed if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRLT k Branch if Less Than Zero, Signed if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRHS k Branch if Half Carry Flag Set if $(H = 1)$ then $PC \leftarrow PC + k + 1$ None 1/2 BRHC k Branch if Half Carry Flag Cleared if $(H = 0)$ then $PC \leftarrow PC + k + 1$ None 1/2				† · · · · ·	1	
BRLTkBranch if Less Than Zero, Signedif $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHSkBranch if Half Carry Flag Setif $(H = 1)$ then $PC \leftarrow PC + k + 1$ None $1/2$ BRHCkBranch if Half Carry Flag Clearedif $(H = 0)$ then $PC \leftarrow PC + k + 1$ None $1/2$					1	
BRHSkBranch if Half Carry Flag Setif (H = 1) then PC \leftarrow PC + k + 1None1/2BRHCkBranch if Half Carry Flag Clearedif (H = 0) then PC \leftarrow PC + k + 1None1/2						
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2		+		1		
			, ,	 ` ` '		
	BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2

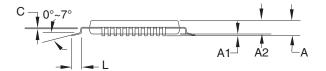
Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
DATA TRANSFER II	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LDD	Rd, - Y	Load Indirect with Displacement	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q Rd, Z	Load Indirect with Displacement Load Indirect	$Rd \leftarrow (Y + q)$ $Rd \leftarrow (Z)$	None None	2
LD	Rd, Z+	Load Indirect Load Indirect and Post-Inc.	$Rd \leftarrow (Z)$ $Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	(X) ← Rr, X ← X + 1	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM LPM	Rd, Z	Load Program Memory	$R0 \leftarrow (Z)$ $Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory Load Program Memory and Post-Inc	$Rd \leftarrow (Z)$ $Rd \leftarrow (Z), Z \leftarrow Z+1$	None None	3
SPM	Ru, Z+	Store Program Memory	$Ru \leftarrow (Z), Z \leftarrow Z+1$ $(Z) \leftarrow R1:R0$	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	Stack ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← Stack	None	2
BIT AND BIT-TEST I	INSTRUCTIONS		1		I.
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=0:6$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(3:0)←Rd(7:4),Rd(7:4)←Rd(3:0)	None	1
BSET	S	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	S D- h	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
SEC SEC	Rd, b	Bit load from T to Register Set Carry	$Rd(b) \leftarrow T$ $C \leftarrow 1$	None C	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN	1	Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I←1	I	1
		Global Interrupt Disable	1←0	1	1
CLI				0	
CLI SES		Set Signed Test Flag	S ← 1	S	1
SES CLS		Set Signed Test Flag Clear Signed Test Flag	S ← 1 S ← 0	S	1
SES					

Mnemonics	Operands	Description	Operation	Flags	#Clocks
SET		Set T in SREG	T ← 1	T	1
CLT		Clear T in SREG	T ← 0	T	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
MCU CONTROL I	INSTRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-Chip Debug Only	None	N/A

Ordering Information

Speed (MHz)	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
16	2.7V - 5.5V	ATmega32A-AU SATmega32A-AUR ⁽³⁾ ATmega32A-PU ATmega32A-MU ATmega32A-MUR ⁽³⁾	44A 44A 40P6 44M1 44M1	Industrial (-40°C to 85°C)
10		ATmega32A-AN SATmega32A-ANR ⁽³⁾ ATmega32A-MN ATmega32A-MNR ⁽³⁾	44A 44A 44M1 44M1	Extended (-40°C to 105°C) ⁽⁴⁾


- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
 - 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
 - 3. Tape & Reel
 - 4. See Appendix A ATmega32A 105°C


	Package Type					
44A	44-lead, 10 x 10 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)					
40P6	40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)					
44M1	44-pad, 7 x 7 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)					

8. Packaging Information

8.1 44A

COMMON DIMENSIONS

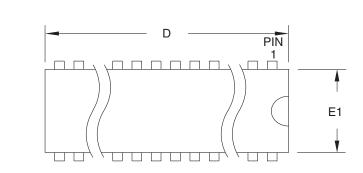
(Unit of Measure = mm)

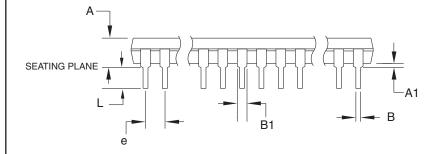
SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	11.75	12.00	12.25	
D1	9.90	10.00	10.10	Note 2
Е	11.75	12.00	12.25	
E1	9.90	10.00	10.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е	0.80 TYP			

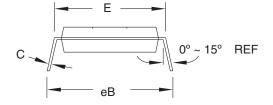
2010-10-20

Notes

- 1. This package conforms to JEDEC reference MS-026, Variation ACB.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.

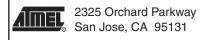

Almer	2325 Orchard San Jose, CA	Parkway
	San Jose, CA	95131


TITLE 44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)


DRAWING NO.	REV.
44A	С

8.2 40P6

Notes:

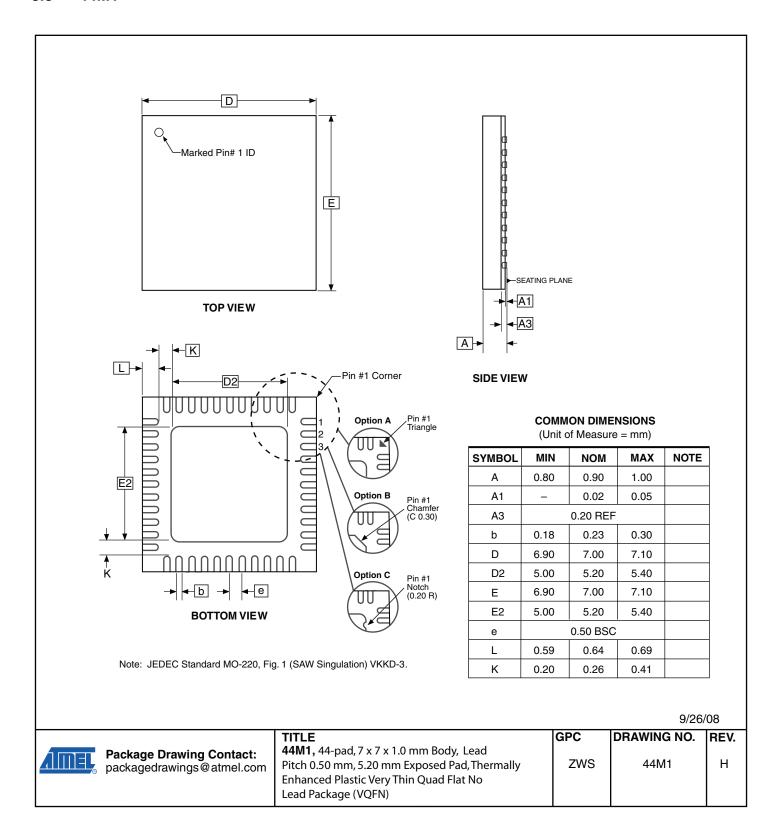

- 1. This package conforms to JEDEC reference MS-011, Variation AC.
- 2. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	4.826	
A1	0.381	_	ı	
D	52.070	_	52.578	Note 2
E	15.240	_	15.875	
E1	13.462	_	13.970	Note 2
В	0.356	_	0.559	
B1	1.041	_	1.651	
L	3.048	_	3.556	
С	0.203	_	0.381	
еВ	15.494	_	17.526	
е				

09/28/01



TITLE $\bf 40P6,\,40\text{-lead}$ (0.600"/15.24 mm Wide) Plastic Dual Inline Package (PDIP) DRAWING NO. REV. 40P6

В

8.3 44M1

9. Errata

9.1 ATmega32A, rev. G to rev. I

- First Analog Comparator conversion may be delayed
- . Interrupts may be lost when writing the timer registers in the asynchronous timer
- IDCODE masks data from TDI input
- · Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising V_{CC} , the first Analog Comparator conversion will take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable the Analog Comparator before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by all-ones during Update-DR.

Problem Fix / Workaround

- If ATmega32A is the only device in the scan chain, the problem is not visible.
- Select the Device ID Register of the ATmega32A by issuing the IDCODE instruction
 or by entering the Test-Logic-Reset state of the TAP controller to read out the
 contents of its Device ID Register and possibly data from succeeding devices of the
 scan chain. Issue the BYPASS instruction to the ATmega32A while reading the
 Device ID Registers of preceding devices of the boundary scan chain.
- If the Device IDs of all devices in the boundary scan chain must be captured simultaneously, the ATmega32A must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

10. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

10.1 Rev. 8155C - 02/11

- Updated the datashee according to the Atmel new brand style guide (new logo, last page, etc).
- 2. Inserted note in "Performing Page Erase by SPM" on page 259.
- 3. Note 6 and Note 7 below Table 27-2, "Two-wire Serial Bus Requirements," on page 301 have been removed.
- 4. Updated "Ordering Information" on page 340 to include Tape & Reel and 105°C devices.
- 5. Updated all "Typical Characteristics"

10.2 Rev. 8155B - 07/09

- 1. Updated "Errata" on page 343.
- 2. Updated the last page with Atmel's new addresses.

10.3 Rev. 8155A - 06/08

1. Initial revision (Based on the ATmega32/L datasheet 2503N-AVR-06/08)

Changes done compared ATmega32/L datasheet 2503N-AVR-06/08:

- Updated description in "Stack Pointer" on page 11.
- All Electrical characteristics is moved to "Electrical Characteristics" on page 296.
- Register descriptions are moved to sub sections at the end of each chapter.
- Test limits of Reset Pull-up Resistor (R_{RST}) in "DC Characteristics" on page 296.
- New graphs in "Typical Characteristics" on page 306.
- New "Ordering Information" on page 339.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: (+1)(408) 441-0311 **Fax**: (+1)(408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG **Tel**: (+852) 2245-6100

Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY

Tel: (+49) 89-31970-0 **Fax**: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

JAPAN

Tel: (+81)(3) 3523-3551 **Fax**: (+81)(3) 3523-7581

© 2011 Atmel Corporation. All rights reserved. / Rev. CORP0XXXX

 $Atmel^{\circ}$, Atmel logo and combinations thereof, AVR° and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifications are provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.