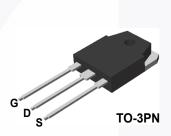
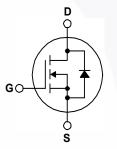


FQA10N80C_F109 N-Channel QFET[®] MOSFET 800 V, 10 A, 1.1 Ω

Features


- + 10 A, 800 V, ${\rm R}_{\rm DS(on)}$ = 1.1 $\Omega\,$ (Max.) @ V_{\rm GS} = 10 V, ${\rm I}_{\rm D}$ = 5 A
- Low Gate Charge (Typ. 44 nC)
- Low Crss (Typ. 15 pF)
- 100% Avalanche Tested
- RoHS compliant



FQA10N80C_F109 — N-Channel QFET[®] MOSFET

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FQA10N80C_F109	Unit
V _{DSS}	Drain to Source Voltage			800	V
I _D	Drain Current	-Continuous (T _C = 25 ^o C)		10	А
	Drain Current	-Continuous (T _C = 100 ^o C)		6.32	А
I _{DM}	Drain Current	- Pulsed	(Note 1)	40	А
V _{GSS}	Gate to Source Voltage			± 30	V
E _{AS}	Single Pulsed Avalanch	e Energy	(Note 2)	920	mJ
AR	Avalanche Current		(Note 1)	10	А
E _{AR}	Repetitive Avalanche Er	nergy	(Note 1)	24	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.0	V/ns
P _D	Dower Dissinction	(T _C = 25°C)		240	W
	Power Dissipation	- Derate above 25°C		1.92	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

Thermal Characteristics

Symbol	Parameter	FQA10N80C_F109	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max	0.52	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max	40	°C/W

Part Number Top Mark		Package Packing Method Reel Siz		e Tape Width		h Q	Quantity		
FQA10N80C_F109 FQA10N80C		TO-3PN				N/A		30 units	
Electric	cal Char	acteristics T _C = 25°	C unless oth	nerwise noted.					
Symbol		Parameter		Test Conditions		Min	Тур	Мах	Unit
Off Cha	racteristi	CS							
BV _{DSS}	Drain-Sour	ce Breakdown Voltage	V _{GS} = 0 V	V _{GS} = 0 V, I _D = 250 μA		800			V
ΔΒV _{DSS} / ΔΤ _J	Breakdowr Coefficient	Voltage Temperature	I _D = 250	μA, Referenced to 25	°C		0.98		V/°C
1	Zoro Coto	Valtaga Drain Current	V _{DS} = 800 V, V _{GS} = 0 V				10	μA	
IDSS	Zero Gate	Voltage Drain Current		0 V, T _C = 125°C				100	μA
I _{GSSF}	Gate-Body	Leakage Current, Forward		V, V _{DS} = 0 V				100	nA
I _{GSSR}	Gate-Body	Leakage Current, Reverse	$V_{GS} = -3$	0 V, V _{DS} = 0 V				-100	nA
On Cha	racteristi	cs							
V _{GS(th)}	Gate Three	shold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$		3.0		5.0	V	
R _{DS(on)}	Static Drain On-Resista		V _{GS} = 10 V, I _D = 5.0 A			0.93	1.1	Ω	
9 _{FS}	Forward Tr	ransconductance	V _{DS} = 50 V, I _D = 5.0 A			5.8		S	
Dvnami	c Charac	teristics							
C _{iss}	Input Capa		$V_{P0} = 25$	V _{DS} = 25 V, V _{GS} = 0 V,			2150	2800	pF
C _{oss}	Output Ca	pacitance	f = 1.0 MHz			180	230	pF	
C _{rss}	Reverse T	ransfer Capacitance				15	20	pF	
Switchi	ng Chara	cteristics							
t _{d(on)}	Turn-On D		$V_{PP} = 40$	V _{DD} = 400 V, I _D = 10.0 A,			50	110	ns
t _r	Turn-On R	ise Time	$R_{\rm G} = 25 \Omega$				130	270	ns
t _{d(off)}	Turn-Off D	elay Time		1.G 2012			90	190	ns
t _f	Turn-Off Fa	all Time			(Note4)		80	170	ns
Qg	Total Gate	Charge	V _{DS} = 64	0 V, I _D = 10.0 A,			45	58	nC
Q _{gs}	Gate-Sour	ce Charge	V _{GS} = 10 V				13.5		nC
Q _{gd}	Gate-Drain	1 Charge			(Note 4)		17		nC
		ode Characteristics a	nd Mavin	num Ratinge					
I _S		Continuous Drain-Source D		-				10.0	A
I _{SM}		Pulsed Drain-Source Diode						40.0	A
V _{SD}		ce Diode Forward Voltage		V, I _S = 10.0 A				1.4	V
t _{rr}		ecovery Time		V, I _S = 10.0 A,			730		ns
0				$V_{GS} = 0.0$, $I_S = 10.0$ A,			10.0		

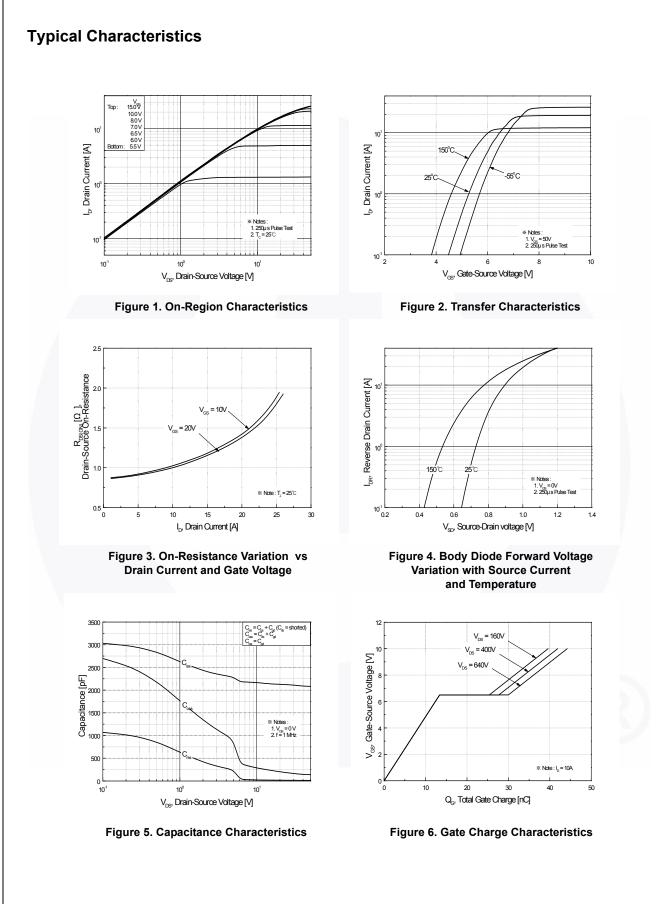
10.9

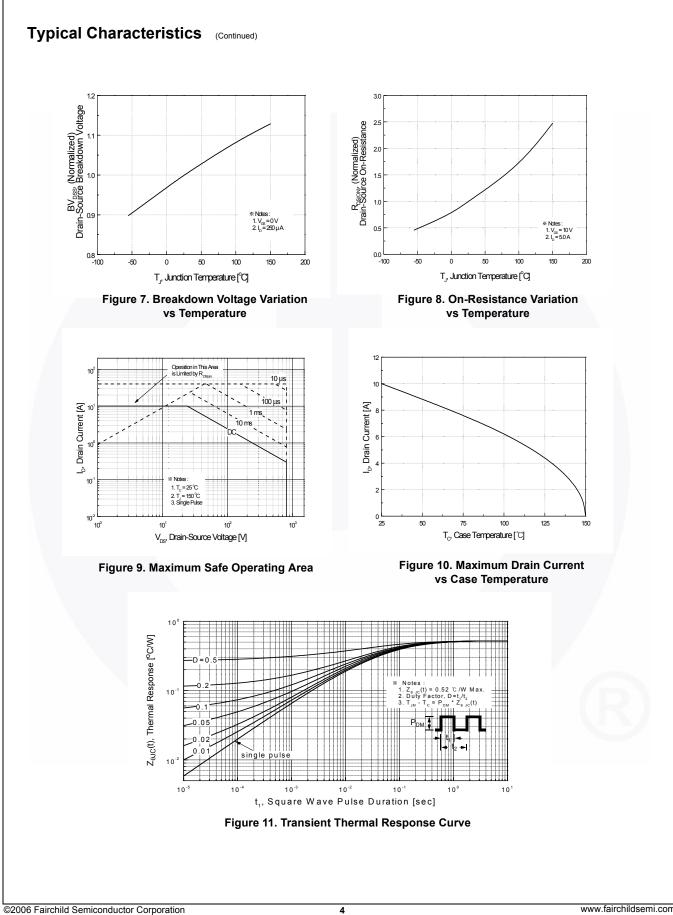
FQA10N80C_F109 — N-Channel QFET[®] MOSFET

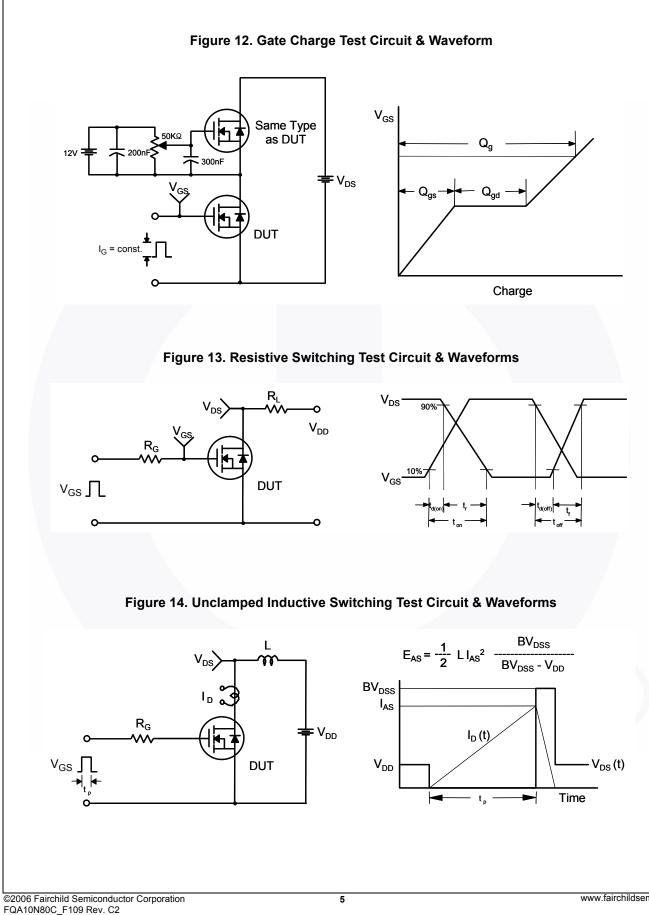
Q_{rr} Notes :

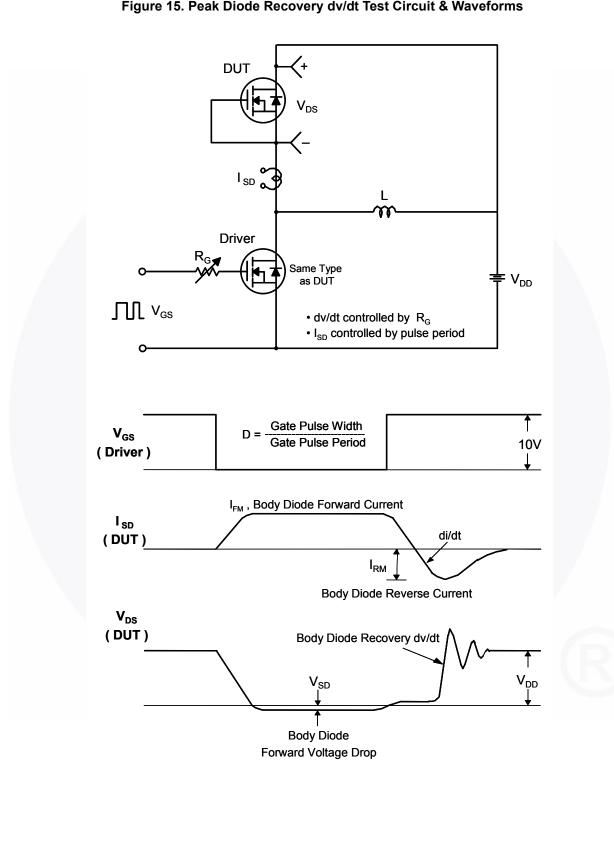
1. Repetitive Rating : Pulse width limited by maximum junction temperature.

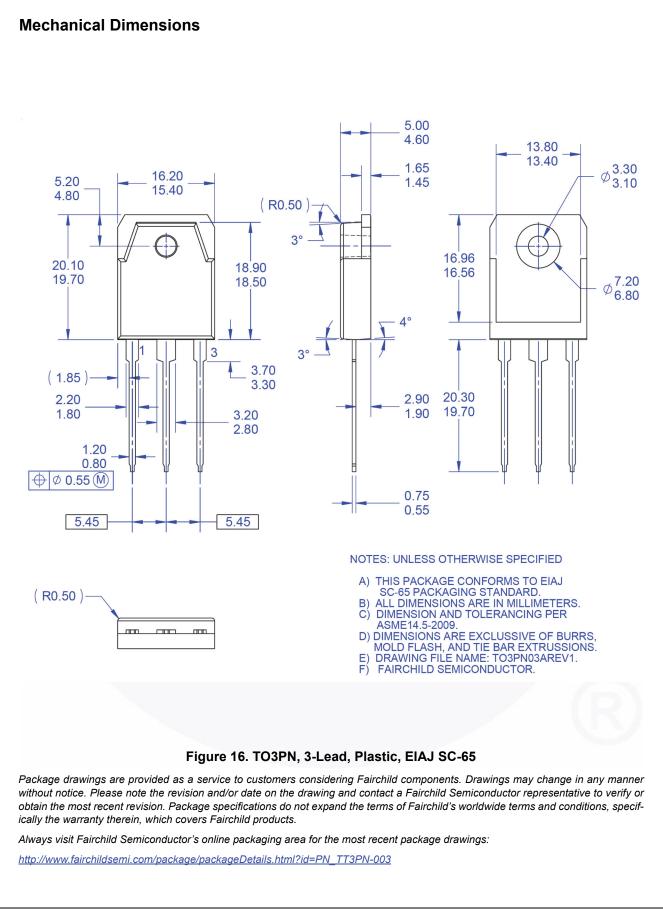
2. L = 17.3 mH, I_{AS} = 10 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C.


Reverse Recovery Charge


3. I_{SD} \leq 8.4 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS,} starting ~T_J = 25°C.


4. Essentially independent of operating temperature.


 $dI_F / dt = 100 \text{ A}/\mu\text{s}$


μC

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™	-215
AX-CAP [®] *	FRFET [®]	
BitSiC™	Global Power Resource SM	PowerTrench [®]
Build it Now™	GreenBridge™	PowerXS™
CorePLUS™	Green FPS™	Programmable Active Droop™
CorePOWER™	Green FPS™ e-Series™	QFET®
CROSSVOLT™	Gmax™	QS™
CTL™	GTO™	Quiet Series™
Current Transfer Logic™	IntelliMAX™	RapidConfigure™
DEUXPEED®	ISOPLANAR™	
Dual Cool™_	Marking Small Speakers Sound Louder	
EcoSPARK®	and Better™	Saving our world, 1mW/W/kW at a time™
EfficentMax™	MegaBuck™	SignalWise™
ESBC™	MICROCOUPLER™	SmartMax™
R	MicroFET™	SMART START™
+	MicroPak™	Solutions for Your Success™
Fairchild [®]	MicroPak2™	SPM®
Fairchild Semiconductor [®]	MillerDrive™	STEALTH™
FACT Quiet Series™	MotionMax™	SuperFET®
FACT [®]	mWSaver®	SuperSOT™-3
FAST [®]	OptoHiT™	SuperSOT™-6
FastvCore™	OPTOLOGIC®	SuperSOT™-8
FETBench™	OPTOPLANAR®	SupreMOS®
FPS™		SyncFET™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Sync-Lock™ SYSTEM^{®*} GENERAL

TinyBoost

TinyBuck®

TinyCalc™

TinvLogic® TINYOPTO™

TinvPower™

TinyPWM™

TinyWire™

TranSiC™

UHC®

VCX™

XS™

UniFFT™

TriFault Detect™

Ultra FRFET™

VisualMax™

VoltagePlus™

TRUECURRENT®* µSerDes™

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FQA10N80 FQP7N40