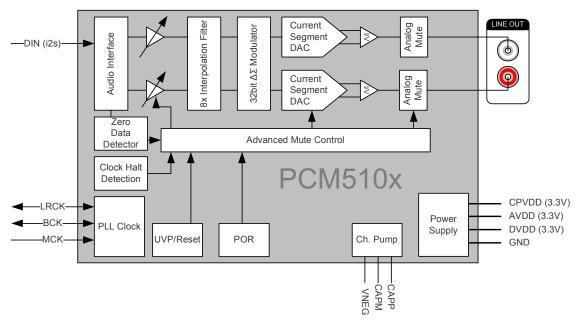


SLAS832A - MARCH 2012 - REVISED MARCH 2012

2V_{RMS} DirectPath[™], 112/106/100dB Audio Stereo DAC with 32-bit, 384kHz PCM Interface


Check for Samples: PCM5102-Q1

FEATURES

- Qualified for Automotive Applications
- AEC-Q100 Qualified with the following results:
 - Device Temperature Grade 2: –40°C to 105°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H2
 - Device CDM ESD Classification Level C3B
- Market-Leading Low Out-of-Band Noise
- Selectable Digital-Filter Latency and Performance
- No DC Blocking Capacitors Required
- Integrated Negative Charge Pump
- Internal Pop-Free Control For Sample-Rate Changes Or Clock Halts
- Intelligent Muting System; Soft Up/Down Ramp and Analog Mute For 120dB Mute SNR With Popless Operation.
- Integrated High-Performance Audio PLL With BCK Reference To Generate SCK Internally
- Small 28-pin TSSOP Package

Typical Performance (3.3V Power Supply)

Parameter	PCM5102 / PCM5101 / PCM5100					
SNR	112 / 106 / 100dB					
Dynamic Range	112 / 106 / 100dB					
THD+N at - 1dBFS	–93 / –92 / –90dB					
Full Scale Output	2.1V _{RMS} (GND center)					
Normal 8× Oversampling Digita	al Filter Latency: 20/f _S					
Low Latency 8× Oversampling	Digital Filter Latency: 3.5/f _S					
Sampling Frequency	8kHz to 384kHz					
System Clock Multiples (f _{SCK}): 64, 128, 192, 256, 384, 512, 768, 1024, 1152, 1536, 2048, 3072; up to 50 MHz						

Figure 1. PCM5102-Q1 Functional Block Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. System Two Cascade, Audio Precision are trademarks of Audio Precision.

DirectPath is a trademark of Texas, Instruments, Inc..

OTHER KEY FEATURES

- Accepts 16-, 24-, And 32-Bit Audio Data
- PCM Data Formats: I²S, Left-Justified
- Automatic Power-Save Mode When LRCK And BCK Are Deactivated.
- 3.3V Failsafe LVCMOS Digital Inputs
- Hardware Configuration
- Single Supply Operation:
 - 3.3V Analog, 3.3V Digital
- Integrated Power-On Reset

APPLICATIONS

- A/V Receivers
- DVD, BD Players
- HDTV Receivers
- Applications Requiring 2V_{RMS} Audio Output

DESCRIPTION

The PCM5102-Q1 devices are a family of monolithic CMOS integrated circuits that include a stereo digitalto-analog converter and additional support circuitry in a small TSSOP package. The PCM5102-Q1 uses the latest generation of TI's advanced segment-DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter. The PCM5102-Q1 provides $2.1V_{RMS}$ ground centered outputs, allowing designers to eliminate DC blocking capacitors on the output, as well as external muting circuits traditionally associated with single supply line drivers.

The integrated line driver surpasses all other chargepump based line drivers by supporting loads down to $1k\Omega$. By supporting loads down to $1k\Omega$, the PCM5102-Q1 can essentially drive up to 10 products in parallel. (LCD TV, DVDR, AV Receivers and so on).

The integrated PLL on the device removes the requirement for a system clock (commonly known as master clock). This allows a 3-wire I²S connection, along with reduced system EMI.

Intelligent clock error and PowerSense under voltage protection utilizes a two level mute system for popfree performance. Upon clock error or system power failure, the device digitally attenuates the data (or last known good data), then mutes the analog circuit

Compared with existing DAC technology, the PCM5102-Q1 family offers up to 20dB lower out-ofband noise, reducing EMI and aliasing in downstream amplifiers/ADCs. (from traditional 100kHz OBN measurements all the way to 3MHz)

The PCM5102-Q1 accepts industry-standard audio data formats with 16- to 32-bit data. Sample rates up to 384kHz are supported.

Table 1. Ordering Information	
-------------------------------	--

Part Number	T _A	Package	top_Side Symbool
PCM5102TPWRQ1	-40°C to 105°C	PW-TSSOP / Reel of 2000	PCM5102Q

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

		VALUE	UNIT	
Supply Voltage	AVDD, CPVDD, DVDD	-0.3 to 3.9		
Digital Input Voltage		-0.3 to 3.9	V	
Analog Input Voltage		-0.3 to 3.9		
Operating Temperature	ture Range -25 to 85			
Storage Temperature F	lange	-65 to 150	°C	
CSD ration	Human-body model (HBM) AEC-Q100 Classification Level H2	2	kV	
ESD rating	Charged-device model (CDM) AEC-Q100 Classification Level C3B	750	V	

www.ti.com

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
θ_{JA}	Theta JA	High K		91.2		
τιΨ	Psi JT			1.0		
Ψ_{JB}	Psi JB			41.5		°C/W
θ_{JC}	Theta JC	Тор		25.3		
θ_{JB}	Theta JB			42.0		

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

Power Su	upply Requirements	1					
		MI	N NOM	MAX	UNIT		
DV_{DD}	Digital supply voltage	Target DV _{DD} = 3.3V	3.0	3.3	3.6	VDC	
AV _{DD}	Analog supply voltage		3.0	3.3	3.6		
CPV _{DD}	Charge-pump suply voltage		3.0	3.3	3.6		
		f _S = 48kHz		7	12		
I _{DD}	DV_{DD} supply current at 3.3V ⁽¹⁾	f _S = 96kHz	6kHz 8			mA	
		f _S = 192kHz		9			
		f _S = 48kHz		8	13		
I _{DD}	DV_{DD} supply current at 3.3V ⁽²⁾	f _S = 96kHz		9		mA	
		f _S = 192kHz		10			
I _{DD}	DV _{DD} supply current at 3.3V ⁽³⁾			0.5	0.8	mA	
I _{CC}	AV _{DD} / CPV _{DD} Supply Current ⁽¹⁾	f _S = 48kHz		11	16		
		f _S = 96kHz		11		mA	
	Current	f _S = 192kHz		11			
		f _S = 48kHz		22	32		
I _{CC}	AV _{DD} / CPV _{DD} Supply Current ⁽²⁾	f _S = 96kHz		22		mA	
	Guneni	f _S = 192kHz		22			
I _{CC}	AV_{DD} / CPV_{DD} Supply Current ⁽³⁾	f _S = n/a		0.2	0.4	mA	
		f _S = 48kHz		59.4	92.4		
	Power Dissipation, $DV_{DD} = 3.3V^{(1)}$	f _S = 96kHz		62.7		mW	
	0.01	f _S = 192kHz		66.0			
		f _S = 48kHz		99.0	148.5		
	Power Dissipation, $DV_{DD} = 3.3V^{(2)}$	f _S = 96kHz		102.3		mW	
		f _S = 192kHz		105.6			
	Power Dissipation, $DV_{DD} = 3.3V^{(3)}$	$f_{S} = n/a$ (Power Down Mode)		2.3	4.0	mW	

Input is Bipolar Zero data.
Input is 1kHz -1dBFS data

(2) (3) Power Down Mode

www.ti.com

ELECTRICAL CHARACTERISTICS

All specifications at $T_A = 25^{\circ}$ C, $AV_{DD} = CPV_{DD} = DV_{DD} = 3.3$ V, $f_S = 48$ kHz, system clock = 512 f_S and 24-bit data unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Resolution		16	24	32	Bits
Data F	ormat (PCM Mode)		·			
	Audio data interface format		I ² S, left justified			
	Audio data bit length		16, 24, 32-bit acc	eptable		
	Audio data format		MSB First, 2's Co	mplement		
s	Sampling frequency		8		384	kHz
	System clock frequency		64, 128, 192, 256 3072 f _{SCK} , up to 50Mhz		1024, 1152, 153	6, 2048, o
Digital	Input/Output					
	Logic Family: 3.3V LVCMOS	compatible				
V _{IH}	Input logic lovel		0.7×DV _{DD}			V
VIL	Input logic level				$0.3 \times DV_{DD}$	v
н	Input logio ourrent	$V_{IN} = V_{DD}$			10	
IL	Input logic current	$V_{IN} = 0V$			-10	μA
/ _{он}		$I_{OH} = -4mA$	$0.8 \times DV_{DD}$			V
√ _{OL}	Output logic level	$I_{OL} = 4mA$			$0.22 \times DV_{DD}$	v
Dynam	nic Performance (PCM Mode) ⁽¹⁾⁽²⁾	(Values shown for three devices	SPCM5102/PCM51	01/PCM5100)		
		$f_{S} = 48 \text{kHz}$		-93/-92/-90	-83/ -82/ -80	
	THD+N at -1 dBFS ⁽²⁾	f _S = 96kHz		-93/-92/-90		
	Dynamic range ⁽²⁾	$f_{\rm S} = 192 \rm kHz$		-93/-92/-90		
	Dynamic range ⁽²⁾	EIAJ, A-weighted, $f_S = 48$ kHz	106/ 100/ 95	112/106/100		
		EIAJ, A-weighted, $f_S = 96$ kHz		112/106/100		
		EIAJ, A-weighted, $f_S = 192 kHz$		112/106/100		
	Signal-to-noise ratio ⁽²⁾	EIAJ, A-weighted, f _S = 48kHz		112/106/100		dB
		EIAJ, A-weighted, $f_S = 96$ kHz		112/106/100		
		EIAJ, A-weighted, $f_S = 192 kHz$		112/106/100		
	Signal to noise ratio with	EIAJ, A-weighted, f _S = 48kHz	113	123		
	analog mute ⁽²⁾⁽³⁾	EIAJ, A-weighted, $f_S = 96$ kHz		123		
		EIAJ, A-weighted, f _S = 192kHz		123		
	Channel Separation	f _S = 48 kHz	100/ 95/ 90	109/103/97		
		f _S = 96kHz		109/103/97		
		f _S = 192kHz		109/103/97		
Analog	g Output					
	Output voltage			2.1		V _{RMS}
	Gain error		-6	±2.0	6	% of FSF
	Gain mismatch, channel-to- channel		-6	±2.0	6	% of FSF
	Bipolar zero error	At bipolar zero	-5	±1.0	5	mV
	Load impedance		1			kΩ
Filter C	Characteristics-1: Normal					
	Pass band				0.45f _S	
	Stop band		0.55f _S			

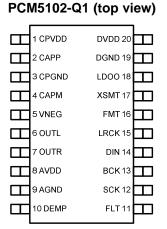
(1) Filter condition: THD+N: 20Hz HPF, 20kHz AES17 LPF Dynamic range: 20Hz HPF, 20kHz AES17 LPF, A-weighted Signal-to-noise ratio: 20Hz HPF, 20kHz AES17 LPF, A-weighted Channel separation: 20Hz HPF, 20kHz AES17 LPF Analog performance specifications are measured using the System Two Cascade[™] audio measurement system by Audio Precision[™] in the RMS mode.

(2) Output load is $10k\Omega$, with 470Ω output resistor and a 2.2nF shunt capacitor (see recommended output filter).

(3) Assert XSMT or both L-ch and R-ch PCM data are BPZ

4 Submit Documentation Feedback

www.ti.com


ELECTRICAL CHARACTERISTICS (continued)

All specifications at $T_A = 25^{\circ}$ C, $AV_{DD} = CPV_{DD} = DV_{DD} = 3.3$ V, $f_S = 48$ kHz, system clock = 512 f_S and 24-bit data unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
	Stop band attenuation		-60			٦Ŀ
	Pass-band ripple				±0.02	dB
	Delay time			20/f _S		S
Filter Cha	racteristics-2: Low Latency				·	
	Pass band				0.47f _S	
	Stop band		0.55f _S			
	Stop band attenuation		-52			
	Pass-band ripple				±0.0001	dB
	Delay time			3.5/f _S		S

DEVICE INFORMATION

TERMINAL FUNCTIONS, PCM5102-Q1

Table 2. PIN FUNCTIONS, PCM5102-Q1

PIN		1/0	DESCRIPTION				
NAME	NO.	I/O	DESCRIPTION				
CPVDD	1	_	Charge pump power supply, 3.3V				
CAPP	2	0	Charge pump flying capacitor terminal for positive rail				
CPGND	3	_	Charge pump ground				
CAPM	4	0	Charge pump flying capacitor terminal for negative rail				
VNEG	5	0	Negative charge pump rail terminal for decoupling, -3.3V				
OUTL	6	0	Analog output from DAC left channel				
OUTR	7	0	Analog output from DAC right channel				
AVDD	8		Analog power supply, 3.3V				
AGND	9	_	Analog ground				
DEMP	10	I	De-emphasis control for 44.1kHz sampling rate ⁽¹⁾ : Off (Low) / On (High)				
FLT	11	I	Filter select : Normal latency (Low) / Low latency (High)				
SCK	12	I	System clock input ⁽¹⁾				
BCK	13	I	Audio data bit clock input ⁽¹⁾				
DIN	14	I	Audio data input ⁽¹⁾				

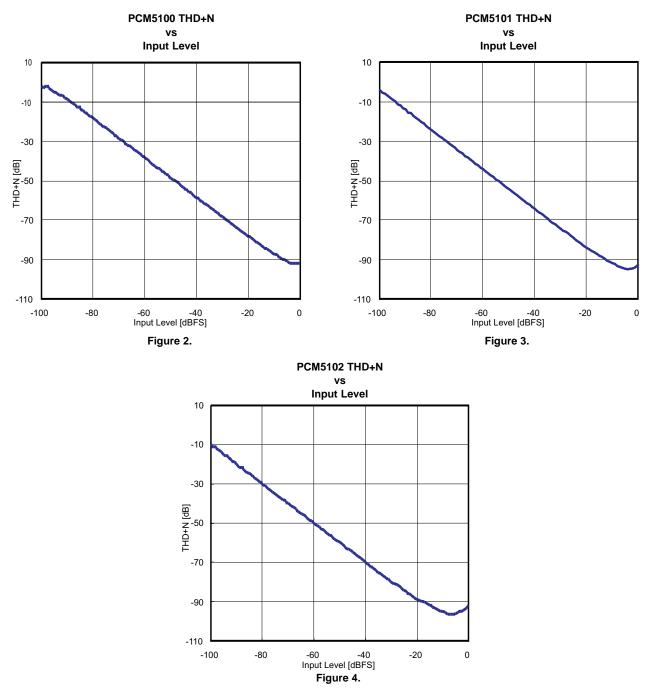
(1) Failsafe LVCMOS Schmitt trigger input

TEXAS INSTRUMENTS

SLAS832A - MARCH 2012 - REVISED MARCH 2012

www.ti.com

PIN								
NO.	1/0	DESCRIPTION						
15	I	Audio data word clock input ⁽¹⁾						
16	I	Audio format selection : I ² S (Low) / Left justified (High)						
17	I	Soft mute control ⁽¹⁾ : Soft mute (Low) / soft un-mute (High)						
18	_	Internal logic supply rail terminal for decoupling						
19	_	Digital ground						
20	—	Digital power supply, 3.3V						
	NO. 15 16 17 18 19	IN I/O NO. I/O 15 I 16 I 17 I 18 — 19 —						

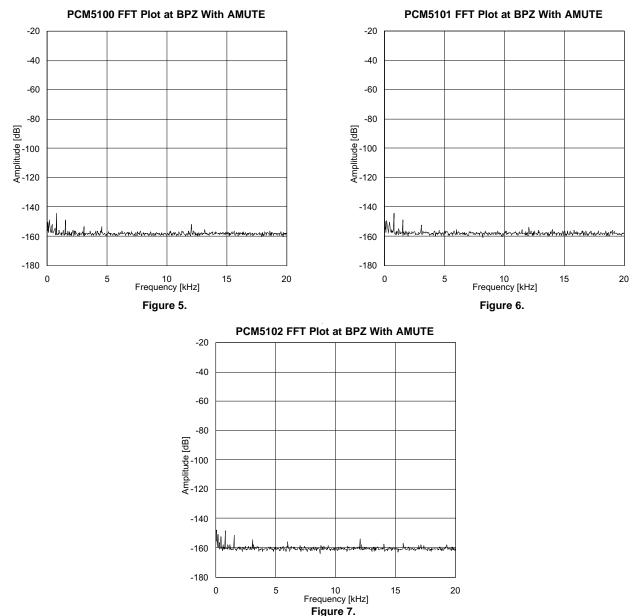

Table 2. PIN FUNCTIONS, PCM5102-Q1 (continued)

www.ti.com

TYPICAL CHARACTERISTICS

All specifications at $T_A = 25^{\circ}$ C, $AV_{DD} = CPV_{DD} = DV_{DD} = 3.3$ V, $f_S = 48$ kHz, system clock = 512 f_S and 24-bit data unless otherwise noted.

PCM5102-Q1


SLAS832A – MARCH 2012 – REVISED MARCH 2012

TEXAS INSTRUMENTS

www.ti.com

TYPICAL CHARACTERISTICS (continued)

All specifications at $T_A = 25^{\circ}$ C, $AV_{DD} = CPV_{DD} = DV_{DD} = 3.3$ V, $f_S = 48$ kHz, system clock = 512 f_S and 24-bit data unless otherwise noted.



www.ti.com

TYPICAL CHARACTERISTICS (continued)

All specifications at $T_A = 25^{\circ}$ C, $AV_{DD} = CPV_{DD} = DV_{DD} = 3.3$ V, $f_S = 48$ kHz, system clock = 512 f_S and 24-bit data unless otherwise noted.

10 Submit Documentation Feedback

APPLICATION INFORMATION

Reset and System Clock Functions

Power-On Reset Function

The PCM5102-Q1 includes a power-on reset function shown in Figure 11. With $V_{DD} > 2.8V$, the power-on reset function is enabled. After the initialization period, the PCM5102-Q1 is set to its default reset state.

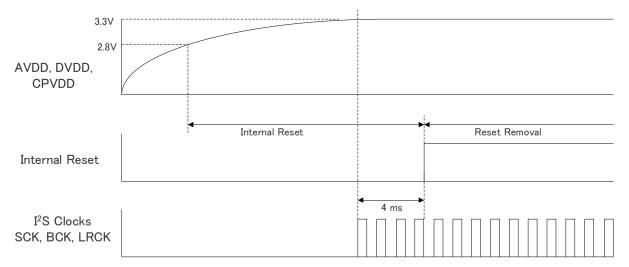


Figure 11. Power-On Reset Timing, DVDD = 3.3V

www.ti.com

System Clock Input

The PCM5102-Q1 requires a system clock for operating the digital interpolation filters and advanced segment DAC modulators. The system clock is applied at the SCK input (pin 12) and supports up to 50MHz. The PCM5102-Q1 has a system-clock detection circuit that automatically senses the system-clock frequency. Common audio sampling frequencies of 8kHz, 16kHz, 32kHz - 44.1kHz - 48kHz, 88.2kHz - 96kHz, 176.4kHz - 192kHz, and 384kHz with ±4% tolerance are supported. The sampling frequency detector sets the clock for the digital filter, Delta Sigma Modulator (DSM) and the Negative Charge pump (NCP) automatically. Table 3 shows examples of system clock frequencies for common audio sampling rates.

SCK rates that are not common to standard audio clocks, between 1MHz and 50MHz, are only supported in software mode, available only in the PCM512x and PCM514x devices, by configuring various PLL and clockdivider registers. This allows the device to become a clock master and drive the host serial port with LRCK and BCK, from a non-audio related clock (e.g. using 12MHz to generate 44.1kHz (LRCK) and 2.8224MHz (BCK)).

Figure 12 shows the timing requirements for the system clock input. For optimal performance, it is important to use a clock source with low phase jitter and noise.

Sampling	System Clock Frequency (f _{SCK}) (MHz)											
Frequency	64 f _S	128 f _S	192 f _S	256 f _S	384 f _S	512 f _S	768 f _S	1024 f _S	1152 f _S	1536 f _S	2048 f _S	3072 f _S
8 kHz	_(1)	1.0240 ⁽²⁾	1.5360 ⁽²⁾	2.0480	3.0720	4.0960	6.1440	8.1920	9.2160	12.2880	16.3840	24.5760
16 kHz	_(1)	2.0480 ⁽²⁾	3.0720 ⁽²⁾	4.0960	6.1440	8.1920	12.2880	16.3840	18.4320	24.5760	36.8640	49.1520
32 kHz	_(1)	4.0960 ⁽²⁾	6.1440 ⁽²⁾	8.1920	12.2880	16.3840	24.5760	32.7680	36.8640	49.1520	_(1)	_(1)
44.1 kHz	_(1)	5.6488 ⁽²⁾	8.4672 ⁽²⁾	11.2896	16.9344	22.5792	33.8688	45.1584	_(1)	_(1)	_(1)	_(1)
48 kHz	_(1)	6.1440 ⁽²⁾	9.2160 ⁽²⁾	12.2880	18.4320	24.5760	36.8640	49.1520	_(1)	_(1)	_(1)	_(1)
88.2 kHz	_(1)	11.2896 ⁽²⁾	16.9344	22.5792	33.8688	45.1584	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)
96 kHz	_(1)	12.2880 ⁽²⁾	18.4320	24.5760	36.8640	49.1520	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)
176.4 kHz	_(1)	22.5792	33.8688	45.1584	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)
192 kHz	_(1)	24.5760	36.8640	49.1520	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)
384 kHz	24.5760	49.1520	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)

Table 3. System Master Clock Inputs for Audio Related Clocks

(1) This system clock rate is not supported for the given sampling frequency.

(2) This system clock rate is supported by PLL mode.

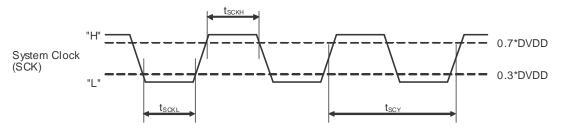


Figure 12. Timing Requirements for SCK Input

	Parameters	Min	Мах	Unit
t _{SCY}	System clock pulse cycle time	20	1000	ns
t _{SCKH}	System clock pulse width, High	9		ns
t _{SCKL}	System clock pulse width, Low	9		ns

System Clock PLL Mode

The system clock PLL mode allows designers to use a simple 3-wire I²S audio source when driving the DAC. This reduces the need for a high frequency SCK, making PCB layout easier, and reduces high frequency electromagnetic interference.

The device starts up expecting an external SCK input, but if BCK and LRCK start correctly while SCK remains at ground level for 16 successive LRCK periods, then the internal PLL will start, automatically generating an internal SCK from the BCK reference. In the PCM5102-Q1, the internal PLL is disabled when an external SCK is supplied; specific BCK rates are required to generate an appropriate master clock. describes the minimum and maximum BCK per LRCK for the integrated PLL to automatically generate an internal SCK.

	BC	K (f _S)
Sample f (kHz)	32	64
8	-	-
16	-	1.024
32	1.024	2.048
44.1	1.4112	2.8224
48	1.536	3.072
96	3.072	6.144
192	6.144	12.288
384	12.288	24.576

Table 5. BCK Rates (MHz) by LRCK Sample Rate for PCM5102-Q1 PLL Operation

Audio Data Interface

Audio Serial Interface

The audio interface port is a 3-wire serial port. It includes LRCK (pin 15), BCK (pin 13), and DIN (pin 14). BCK is the serial audio bit clock, and it is used to clock the serial data present on DIN into the serial shift register of the audio interface. Serial data is clocked into the PCM5102-Q1 on the rising edge of BCK. LRCK is the serial audio left/right word clock.

CONTROL MODE	FORMAT	DATA BITS	MAX LRCK FREQUENCY [f _S]	SCK RATE [x f _s]	BCK RATE [x f _S]
Hardware Control	l ² S/LJ	32, 24, 20, 16	Up to 192kHz	128 – 3072 (≤50MHz)	64, 48, 32
			384kHz	64, 128	64, 48, 32

The PCM5102-Q1 requires the synchronization of LRCK and system clock, but does not need a specific phase relation between LRCK and system clock.

If the relationship between LRCK and system clock changes more than ±5 SCK, internal operation is initialized within one sample period and analog outputs are forced to the bipolar zero level until resynchronization between LRCK and system clock is completed.

If the relationship between LRCK and BCK are invalid more than 4 LRCK periods, internal operation is initialized within one sample period and analog outputs are forced to the bipolar zero level until resynchronization between LRCK and BCK is completed.

www.ti.com

PCM Audio Data Formats and Timing

The PCM5102-Q1 supports industry-standard audio data formats, including standard I²S and left-justified. Data formats are selected using the FMT (pin 16), Low for I²S, and High for Left-justified.

All formats require binary 2s complement, MSB-first audio data. Figure 13 shows a detailed timing diagram for the serial audio interface.

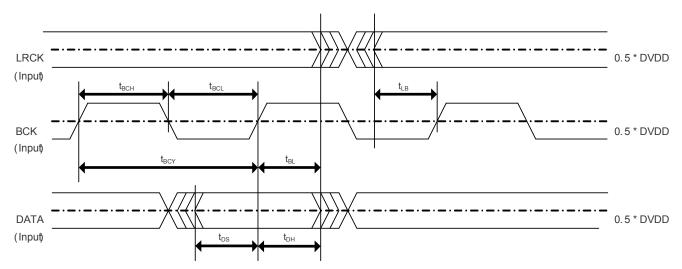
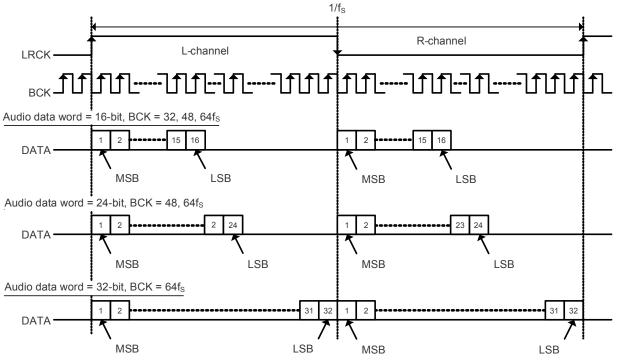



Figure 13. PCM5102-Q1 Serial Audio Timing - Slave

	Parameters	Min	Max	Units
t _{BCY}	BCK Pulse Cycle Time	40		ns
t _{BCL}	BCK Pulse Width LOW	16		ns
t _{BCH}	BCK Pulse Width HIGH	16		ns
t _{BL}	BCK Rising Edge to LRCK Edge	8		ns
t _{LB}	LRCK Edge to BCK Rising Edge	8		ns
t _{DS}	DATA Set Up Time	8		ns
t _{DH}	DATA Hold Time	8		ns
f _{BCK}	BCK frequency @ DVDD=3.3V		24.576	MHz

Table 7. Audio Interface Slave Timing

Left Justified Data Format; L-channel = HIGH, R-channel = LOW

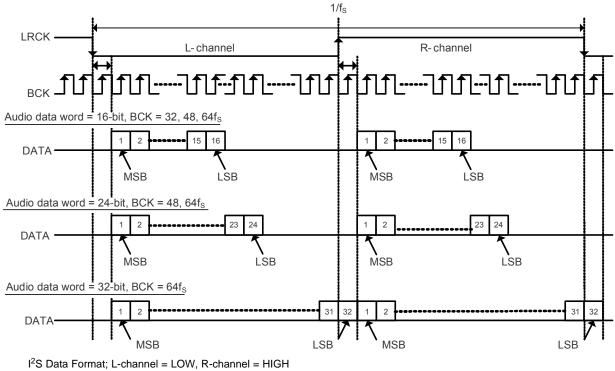


Figure 15. I²S Audio Data Format

Function Descriptions

Interpolation Filter

The PCM5102-Q1 provides 2 types of interpolation filter. Users can select which filter to use by using the FLT pin (pin11)

Table 8	. Digital	Interpolation	Filter	Options
---------	-----------	---------------	--------	---------

FLT Pin	Description
0	FIR Normal x8/x4/x2/x1 Interpolation Filters
1	IIR Low Latency x8/x4/x2/x1 Interpolation Filters

The Normal x8/x4/x2/x1(bypass) Interpolation filter is programmed in 256 cycles in 1 sampling frequency (f_S) for from 8kHz to 384kHz.

Table 9. Normal x8 Interpolation Filter

Parameter	Condition	Value (Typ)	Value (Max)	Units
Filter Gain Pass Band	0 0.45f _S		±0.02	dB
Filter Gain Stop Band	0.55f _S 7.455f _S	-60		dB
Filter Group Delay		22/f _S		S

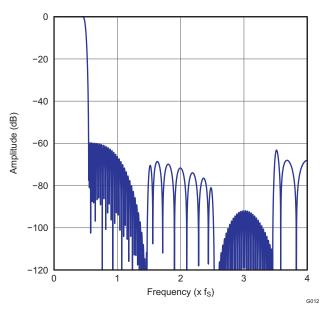


Figure 16. Normal x8 Interpolation Filter Frequency Response

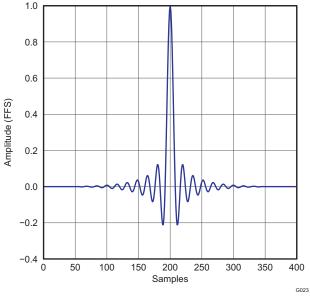
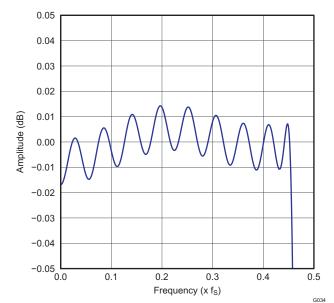
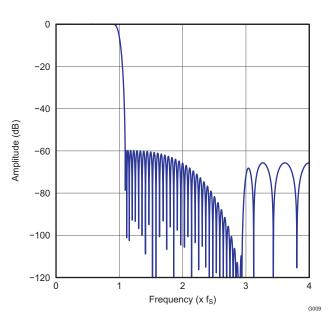


Figure 17. Normal x8 Interpolation Filter Impulse Response

SLAS832A - MARCH 2012 - REVISED MARCH 2012




Figure 18. Normal x8 Interpolation Filter Passband Ripple

The Normal x4/x2/x1(bypass) Interpolation filter is programmed in 256 cycles in 1 sampling frequency (f_S) for from 8kHz to 384kHz.

Table 10. Normal x4 Interpolation Filter

· · · · · · · · · · · · · · · · · · ·					
Parameter	Condition	Value (Typ)	Value (Max)	Units	
Filter Gain Pass Band	0 0.45f _S		±0.02	dB	
Filter Gain Stop Band	0.55f _S 7.455f _S	-60		dB	
Filter Group Delay		22/f _S		S	

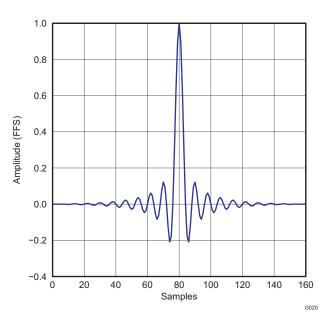


Figure 19. Normal x4 Interpolation Filter Frequency Response

Figure 20. Normal x4 Interpolation Filter Impulse Response

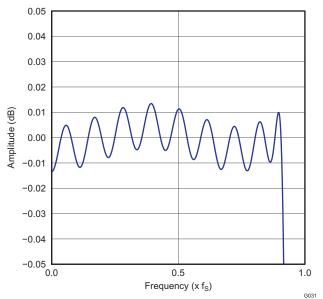
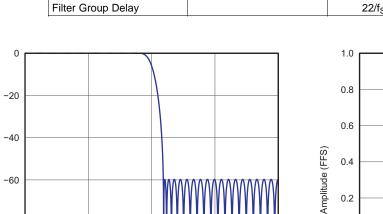


Figure 21. Normal x4 Interpolation Filter Passband Ripple

Amplitude (dB)

-80

-100


-120

0

www.ti.com

Normal x2 / x1(bypass) Interpolation filter is programmed in 256 cycles in 1 sampling frequency (f_S) for from 8kHz to 384kHz.

Table 11. Normal x2 Interpolation Filter				
Parameter	Condition	Value (Typ)	Value (Max)	Units
Filter Gain Pass Band	0 0.45f _S		±0.02	dB
Filter Gain Stop Band	0.55f _S 7.455f _S	-60		dB
Filter Group Delay		22/f _S		s

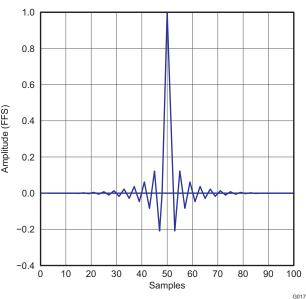


Figure 22. Normal x2 Interpolation Filter Frequency Response

2

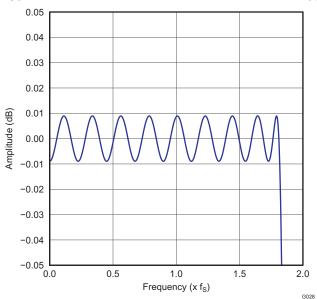
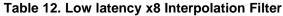
Frequency (x f_S)

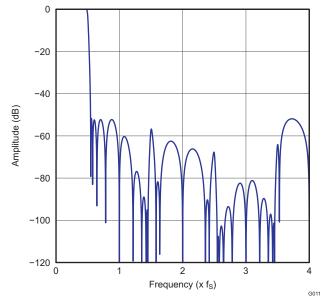
3

4

G006

1


Figure 24. Normal x2 Interpolation Filter Passband Ripple

The low-latency x8 / x4 / x2 / x1(bypass) Interpolation filter is programmed in 256 cycles in $1f_S$ for from 8kHz to 384kHz.

Parameter	Condition	Value (Typ)	Units
Filter Gain Pass Band	0 0.45f _S	±0.0001	dB
Filter Gain Stop Band	0.55f _S 7.455f _S	-52	dB
Filter Group Delay		3.5/f _S	S

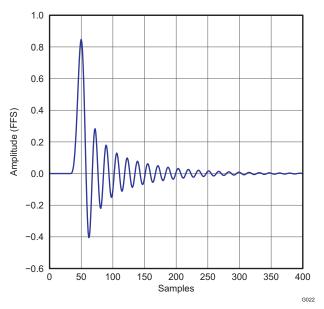


Figure 25. Low latency x8 Interpolation Filter Frequency Response

Figure 26. Low latency x8 Interpolation Filter Impulse Response

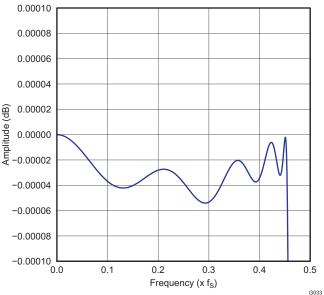
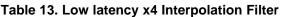
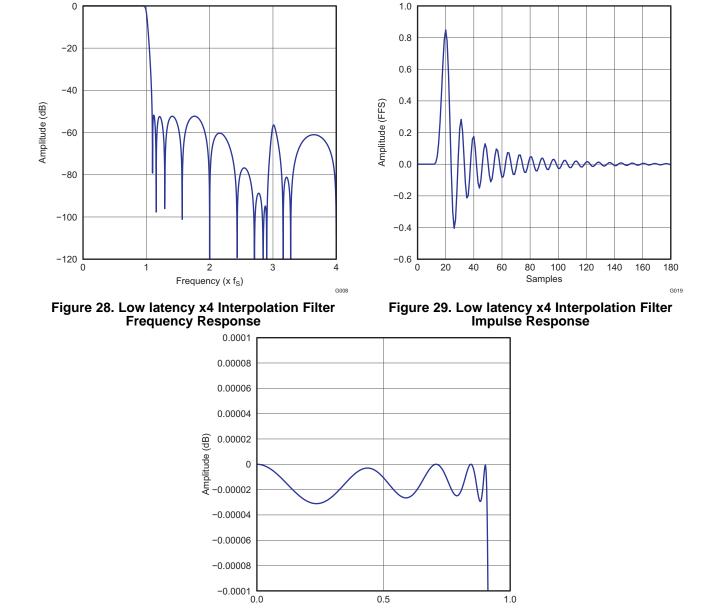




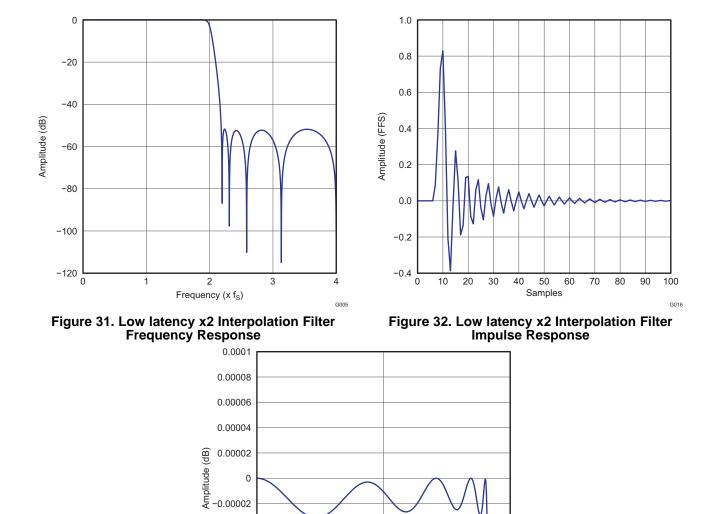
Figure 27. Low latency x8 Interpolation Filter Passband Ripple

SLAS832A - MARCH 2012 - REVISED MARCH 2012

Table 13. Low latency x4 interpolation Filter				
Parameter	Condition	Value (Typ)	Units	
Filter Gain Pass Band	0 0.45f _S	±0.0001	dB	
Filter Gain Stop Band	0.55f _S 3.455f _S	-52	dB	
Filter Group Delay		3.5	S	

0.5

Frequency $(x f_S)$


1.0

G030

www.ti.com

Table 14. Lo	w latency x2 Inte	polation Filter	

Parameter	Condition	Value (Typ)	Units	
Filter Gain Pass Band	0 0.45f _S	±0.0001	dB	
Filter Gain Stop Band	0.55f _S 1.455f _S	-52	dB	
Filter Group Delay		3.5	s	

-0.00004 -0.00006 -0.00008

-0.0001 L

1.0

G030

0.5

Frequency $(x f_S)$

Figure 33. Low latency x2 Interpolation Filter Passband Ripple

Zero Data Detect

The PCM5102-Q1 has a zero-data detect function. When the device detects continuous zero data, it enters a full analog mute condition.

The PCM5102-Q1 counts zero data over 1024LRCKs (21ms @ 48kHz) before setting analog mute.

Power Save Mode

When any kind of clock error (SCK, BCK, and LRCK) or clock halt is detected, the PCM5102-Q1 enters Stand-by mode automatically. The current-segment DAC and Line driver are also powered down.

When BCK and LRCK halt to a low level for more than 1 second, the PCM5102-Q1 enters Power down mode automatically. Power-down mode includes the negative charge pump and Bias/Reference circuit power-down in addition to stand-by.

Whenever expected Audio clocks (SCK, BCK, LRCK) are applied to the PCM5102-Q1, the device starts its powerup sequence automatically.

XSMT Pin (Soft Mute / Soft Un-Mute)

For external digital control of the PCM5102-Q1, the XSMT pin must be driven by an external digital host with a specific/minimum rise time (t_r) and fall time (t_f) for soft mute and soft un-mute. The PCM5102-Q1 requires t_r/t_f times of less than 20ns. In the majority of applications, this shouldn't be a problem, however, traces with high capacitance may have issues.

When the XSMT pin is shifted from high to low (3.3V to 0V), a soft digital attenuation ramp is started. -1dB attenuation will be applied every 1f_S from 0dBFS to $-\infty$. This takes 104 sample times.

When the XSMT pin is shifted from low to high (0V to 3.3V), a soft digital "un-mute" is started. 1dB gain steps are applied every f_S from $-\infty$ to 0dBFS. This takes 104 sample times.

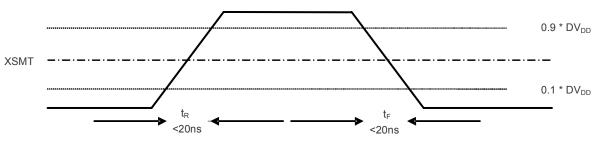


Figure 34. XSMT Timing for Soft Mute and Soft Un-Mute

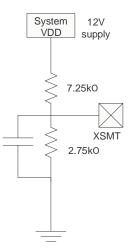
Table 15.	XSMT	Timing	Parameters
-----------	------	--------	------------

Parameters	Min	Max	Unit
Rise time (t _R)		20	ns
Fall time (t _F)		20	ns

External Power Sense Undervoltage Protection mode

The XSMT pin can also be used to monitor a system voltage, such as the 24VDC LCD TV backlight, or 12VDC system supply using a potential divider created with two resistors. (See Figure 35)

- If the XSMT pin makes a transition from 1 to 0 over 6ms or more, the device will switch into external undervoltage protection mode. In this mode, two trigger levels are used.
- When XSMT pin level reaches 2V, soft mute process begins.
- When XSMT pin level reaches 1.2V, analog mute will engage, regardless of digital audio level, and analog shut down will begin. (i.e. DAC circuitry will power down etc).


A timing diagram to show this is shown in Figure 36.

NOTE

The XSMT input pins voltage range is from -0.3V to DVDD + 0.3V.The ratio of external resistors must be considered within this input range. Any increase in power supply (such as power supply positive noise/ripple) can pull the XSMT pin higher than DVDD+0.3V.

For example, if the PCM5102-Q1 is monitoring a 12V input, and dividing the voltage by 4, then the voltage at XSMT during ideal power supply conditions will be 3V. If the voltage spikes any higher than 14.4V, then XSMT will see a voltage in excess of 3.6V (DVDD+0.3), potentially damaging the device.

Providing the divider is set appropriately, any DC voltage can be monitored.

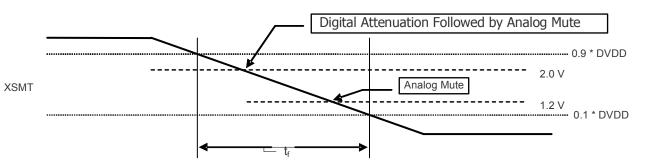


Figure 36. XSMT Timing for Undervoltage Protection

www.ti.com

Typical Application Circuits

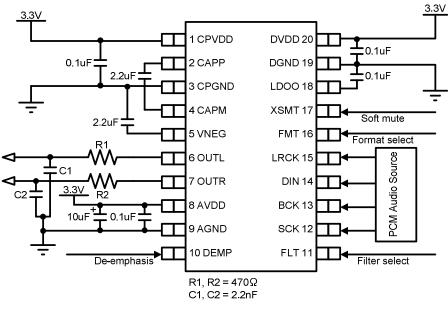


Figure 37. PCM5102-Q1 Standard PCM Audio Operation, 3.3V

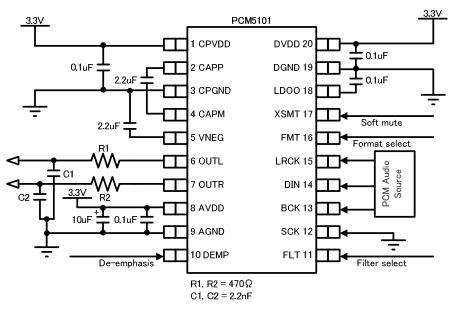


Figure 38. PCM5102-Q1 PLL Operation

www.ti.com

Recommended Output Filter for the PCM5102-Q1

The diagram in Figure 39 shows the recommended output filter for the PCM5102-Q1. The new PCM5102-Q1 next generation current segment architecture offers excellent out of band noise, making a traditional 20kHz low pass filter a thing of the past.

The RC settings below offer a –3dB filter point at 153kHz (approx), giving the DAC the ability to reproduce virtually all frequencies through to it's maximum sampling rate of 384kHz.

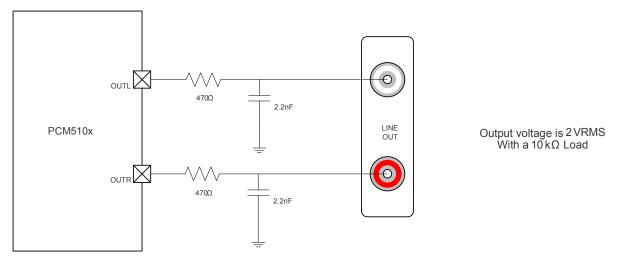


Figure 39. Recommended Output Lowpass Filter for 10kΩ Operation

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	e Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
PCM5102TPWRQ1	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

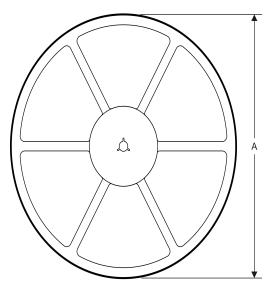
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF PCM5102-Q1 :

Catalog: PCM5102

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product


PACKAGE MATERIALS INFORMATION


www.ti.com

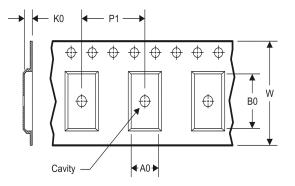
TAPE AND REEL INFORMATION

REEL DIMENSIONS

Texas Instruments

TSSOP

PW


20

TAPE AND REEL INFORMATION

PCM5102TPWRQ1

* 4

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

w

(mm)

16.0

8.0

1.6

Pin1

Quadrant

Q1

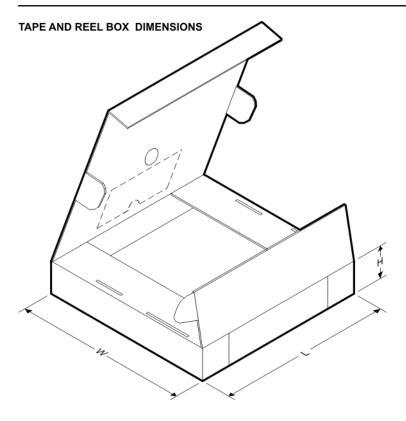
All dimensions are nominal								
Device	Package Drawing		Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)

2000

330.0

16.4

6.95

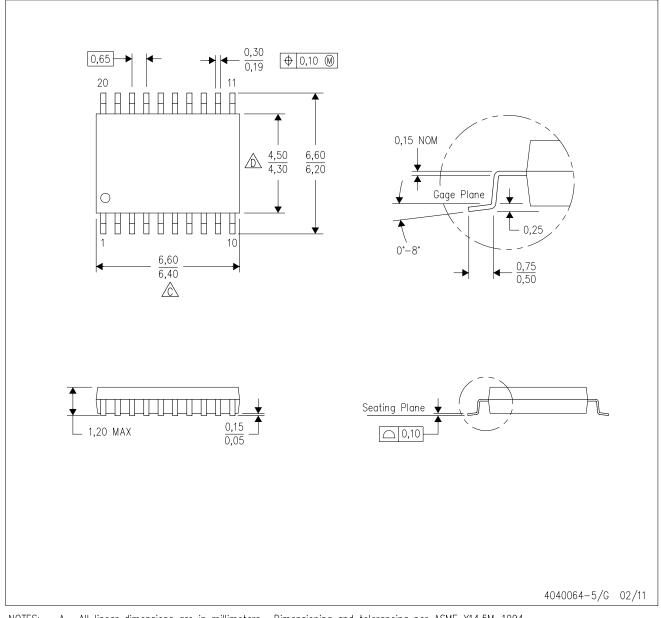

7.1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

30-Aug-2012



*All dimensions are nominal

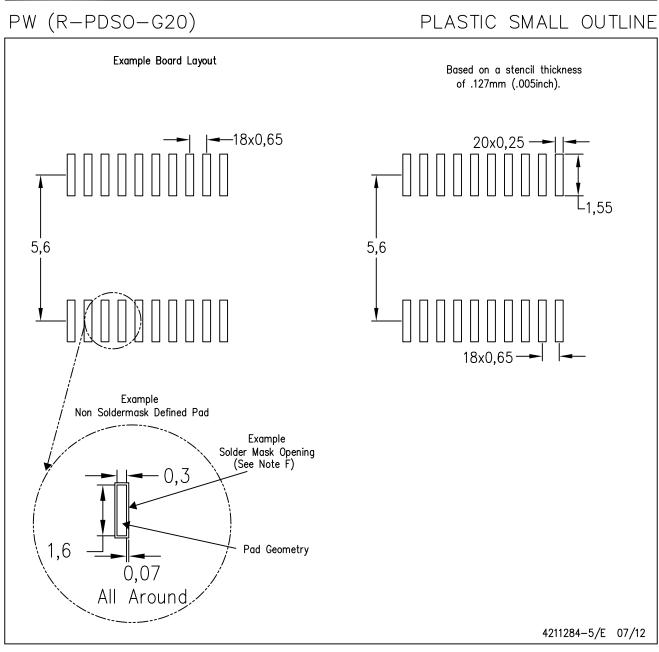
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCM5102TPWRQ1	TSSOP	PW	20	2000	367.0	367.0	38.0

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated