The TRANSERVO by YAMAHA !

Stepping motor single-axis robots
that break all the old rules !

The TRANSERVO - Don't you know about it yet?

Thanks for taking the time to check out our catalog!
You are probably using single-axis robots for all kinds of applications with functions like positioning and push aren't you? Well, the TRANSERVO is a new type of compact single-axis robot that combines the best features of stepping motors and servomotors.
In recent years, automated machinery is being subjected to ever tougher demands in terms of specifications, costs, and deadlines of delivery, which call for nearly superhuman efforts from designers
Well the TRANSERVO will prove the answer to all those design problems.

1 New control method combines the best features of servo and stepping motors!

Stepping motors have great features such as a low cost and no tiny vibrations while stopped. Yet they also have drawbacks such as a drastic drop in torque at high speeds and heavy current consumption while stopped.
The TRANSERVO by YAMAHA eliminates all these problems by adopting an innovative vector control method. In effect, the TRANSERVO delivers the same functions and low cost of a servomotor while using a stepping motor.

- High-speed operation slashes production time!

TRANSERVO moves even a heavy workpiece quickly because the payload is constant up to its maximum speed. On ordinary equipment, with conventional control the upper model has to be selected to match the high-speed range, but now one model can do it all!

O Energy saver! Perfect stop!

Control is basically the same as a servomotor so power consumption is kept to a minimum, which saves energy and helps cut down on CO_{2} emissions. Also perfect stop can be achieved as the same as with ordinary stepping motors so choose this setting if needed.

Quiet operation - Just like a servo motor!

Robots using ordinary stepping motors have a characteristic "shrill" or high-pitched noise during operation. TRANSERVO operation, however, is extremely quiet, just like a servo motor!

Stepping motor

0
Simple design \& low cos No vibration while stopped

Servo Motors

Movement is smooth

- Constant torque at all speed range

Combines the best features of both types!

\times

- high-pitched operating noise - drop in torque at high-speed
 - Tiny vibrations while stopped - Cost is high

2 Environmentally rugged resolver provides closed loop control

Of course "no step-out". The resolver used here for detecting the motor position is the same well-known and reliable resolver as used in our high-level robots. It offers stable position detection even in harsh environments containing dust or oil, etc. Moreover, it boasts a high resolving power of 20480 pulses per rotation.

The resolver is a magnetic position detector Its structure is simple with no electronic component and no optical elements. One great feature compared to ordinary optica encoders is that there are very few points where a failure might occur.
Vast quantities of resolvers are used in fields like aviation and the automobile industry where reliability is essential and also because they are highly tough in harsh environments with a low failure rate

3 Ideal 4-line circular-groove 2-point contact guide gives longen service life

A newly developed module guide is employed, and a 4-line circular-groove 2-point contact guide, which has been used for high-level models, was built into a body that is just as compact as the previous models.
Guide maintains a satisfactory rolling movement with minimal ball differential slip, even if a large momentum load is applied or the installation surface accuracy (flatness) is bad. Rugged design ensures that breakdowns from problems like abnormal wear will seldom occur.

TSTRANSERVI

TRANSERVO Series Lineup

A maximum stroke up to 800 mm . High lead types are also available on the SS05/SS05H for unmatchable speed!

| Ordering Method Example: SS05-06SB-NN-600-1L-SNP

TRANSERVO Basic Specifications

Model No.		SS04/SSC04			SS05/SSC05			SS05H/SSC05H		
Motor		$42 \square$ step motor								
Repeatability (mm)		± 0.02								
Position detector		Resolver								
Reduction mechanism		Ball screw ¢ $^{\text {8 }}$			Ball screw $\mathbf{\$ 1 2}$					
Ball screw lead (mm)		12	6	2	20	12	6	20	12	6
Maximum speed (mm / s)	Horizontal	600	300	100	1000	600	300	1000	600	300
	Vertical								500	250
Maximum payload (Kg)	Horizontal	2	4	6	4	6	10	6	8	12
	Vertical	1	2	4	-	1	2	-	2	4
Max. pressing force (N)		45	90	150	27	45	90	36	60	120
Stroke (mm)		50 to 400			50 to 800			50 to 800		
Degree of cleanliness		CLASS 10 (0.1 micron base; only for clean room models)								

Model No.	TS-S
Number of controllable axes	1
Controllable robots	TRANSERVO
Dimensions	W30×H162×D82mm
Weight	Approx. 200g
Input power supply voltage	DC24V $\pm 10 \%$
Power capacity	70 VA
Resolution	20480 pulses/rev
Control method	Closed loop, vector control method
Number of points	255
Number of error logs	50
Operating emperature $/$ storage temperature	0 to $40^{\circ} \mathrm{C} /-10$ to $65^{\circ} \mathrm{C}$

TS-S system configuration

Dedicated Robot Positioner TS-S

TS-S is a positioner type controller that only performs point trace. No program is needed. Operation is simple. After setting point data, specify the point number and enter a START signal a from host controller such as a PLC. Positioning or pushing operation then begins.

Main operation patterns

Merge operation

Output pattern

TS series main functions

Detailed data can be set for each point

Settings such as acceleration, deceleration, zone output range, and position margin zone can be set for each point. Different operations can be easily specified by combining these settings with the above operation patterns.

Setting items

Setting item		Description
1	Run type	Specifies operation pattern such as ABS, INC, positioning, push, and point-to-point link.
2	Position	Specifies position or distance to move.
3	Speed	Specifies maximum speed during operation.
4	Accel.	Specifies acceleration during operation.
5	Decel.	Specifies deceleration during operation (Percentage of acceleration)
6	Push	Specifies motor current limitation during pushing operation.
7	Zone (-)	Specifies upper and lower limits of "personal zone" for
8	Zone (+)	each point data.

Note: Acceleration and deceleration can be set in easy-to-understand percentage (\%) units (standard setup) or in SI units (custom setup) which make it easy to calculate the cycle time.

Maximum acceleration auto setting

Acceleration is a critical parameter that determines how long the robot can continue operating (or service life). In worst cases, setting the acceleration too high may cause the robot to breakdown after a short time.
On the TS series, the maximum acceleration is finely set by taking into account the service life span of the motor output and the guide for each robot model and payload. This eliminates any worry about setting the acceleration too high by mistake.

Full range of monitor functions

The TS-Manager software was developed exclusively for the TS series. Besides data write and edit, data backup, and parameter settings, it has a cycle time simulator and various types of monitor functions.

A run distance monitor is also included as a standard feature, which helps determine maintenance schedules. Design stresses easy use and friendly operation.

Main monitor displays	
\cdot Position	\cdot Speed
\cdot	Current

Supports various field networks

Select from the following I/O types to match the host controller specifications. All hardware is built into the positioner unit so cabling and wire hookups are easy.

Item	Description
NPN	Input: 16 points, 24VDC $\pm 10 \%, 5.1 \mathrm{~mA} /$ point, positive common Output: 16 points, 24VDC $\pm 10 \%, 50 \mathrm{~mA} /$ point, sink type
PNP	Input: 16 points, 24VDC $\pm 10 \%, 5.1 \mathrm{~mA} /$ point, negative common Output: 16 points, 24VDC $\pm 10 \%, 50 \mathrm{~mA} /$ point, source type
CC-Link	Supports CC-Link Ver. 1.10, remote device station (1 station)
DeviceNet	DeviceNet slave node

Connection to Peripheral Units

Input signal

Signal name	Meaning	Description
PINO to PIN7	Point number selection	- Point number used to perform positioning operation - Point number to teach current position
JOG+	Jog (+)	Jogs in plus (+) direction when ON.
JOG-	Jog (-)	Jogs in plus (-) direction when ON.
MANUAL	Manual mode	ON: manual mode
ORG	Return-to-origin	Starts return-to-origin.
ILOCK	Interlock	ON: Movement possible, OFF: Movement impossible

Output signal

Signal name	Meaning	Description
POUT0 to POUT7	Point number selection	• Point number used to perform positioning operation - Alarm number when alarm has occurred
OUT0	Control output 0 Control output 1 OUT1 OUT2 OUT3	Allocate the following outputs to OUT0 to OUT3. - Zone output • Personal zone output Control output 3
- Manual mode status • Return-to-origin status		
- Near width output • Movement-in-progress output		
- Push status • Warning output		

TS Series Options (for all TS series models)

TS-Manager data cable Select from USB cable or D-sub cable.
Model: KCA-M538F-00 (D-sub) KCA-M538F-AO (USB)

I/O cables (for maintenance tasks)
NPN or PNP I/O cables Color-coded flat cables. Lattice type, 20 conductors $\times 2$ total length 2 meters, one end unterminated.
This cable is supplied with NPN and PNP units) Model: KCA-M4421-20

TRANSERVO robot cable (flexible cable) (Cable specifically designed to connect TS-S to SS04/SS05/SS05H/SSCO4/SSC05/SSC05H)

Model: KCK-M4751-10 (1m)
KCK-M4751-30 (3m)
KCK-M4751-50 (5m)
KCK-M4751-A0 (10m)
Note: The standard units of the TRANSERVO series robots and positioners are CE compliant.
TS-S

OCE compliance
Ordering Method

*1: The robot cable is flexible and resists bending

Basic specifications				
Motor		$42 \square$ Step motor		
Repeated positioning accuracy ${ }^{* 1}$ (mm)		± 0.02		
Deceleration mechanism		Ball screw 88 (Class C10)		
Ball screw lead (mm)		12	6	2
Maximum speed (mm/sec)		600	300	100
Maximum payload (kg)	Horizontal installation	2	4	6
	Vertical installation	1	2	4
Max. pressing force (N)		45	90	150
Stroke (mm)		50 to 400 (50 pitch)		
Overall length (mm)	Horizontal installation	Stroke+216		
	Vertical installation	Stroke+261		
Maximum outside dimension of body cross-section		W49×H59mm		
Cable length (m)		Standard : 1 / Option : 3, 5, 10		

*1: Positioning repeatability in one direction

$\underline{\text { Horizontal installation (Unit: } \mathrm{mm} \text {) }}$				
		A	B	C
$\begin{aligned} & \hline \\ & 0 \\ & \frac{2}{n} \\ & \hline \end{aligned}$	1 kg	807	218	292
	2 kg	667	107	152
$\stackrel{0}{\circ} \mathrm{O}$	2 kg	687	116	169
	3 kg	556	76	112
	4 kg	567	56	84
$\begin{aligned} & \stackrel{5}{0} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	4 kg	869	61	92
	6 kg	863	40	60

Wall installation			(Unit: mm)	
		A	B	C
$\bar{\circ}$ $\stackrel{0}{2}$	1kg	274	204	776
	2kg	133	93	611
$\begin{aligned} & \stackrel{7}{0} \\ & \text { 合 } \end{aligned}$	2kg	149	102	65
	3kg	92	62	516
	4kg	63	43	507
$\begin{aligned} & \hline \begin{array}{l} \text { d } \\ \stackrel{3}{2} \end{array} \end{aligned}$	4kg	72	48	829
	6 kg	39	29	789

(istance from center of slider upper surface to conveyor center-of-gravity at a guide service life of
\square Static loading moment

SSO4

| Effective stroke | $\mathbf{5 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 5 0}$ | $\mathbf{2 0 0}$ | $\mathbf{2 5 0}$ | $\mathbf{3 0 0}$ | $\mathbf{3 5 0}$ | $\mathbf{4 0 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Note 1. |
| :---: | | Stop positions are determined by the mechanical stoppers at both ends. |
| :---: |
| L |

OHigh lead: Lead 20 OCE compliance

*1: Brake-equipped models can be selected only when the lead is 12 mm or 6 mm
${ }^{*} 2$: The robot cable is flexible and resists bending.

Basic specifications				
Motor		$42 \square$ Step motor		
Repeated positioning accuracy ${ }^{* 1}$ (mm)		± 0.02		
Deceleration mechanism		Ball screw $\$ 12$ (Class C10)		
Ball screw lead (mm)		20	12	6
Maximum speed (mm/sec) ${ }^{* 2}$		1000	600	300
Maximum payload (kg)	Horizontal installation	4	6	10
	Vertical installation	-	1	2
Max. pressing force (N)		27	45	90
Stroke (mm)		50 to 800 (50 pitch)		
Overall length (mm)	Horizontal installation	Stroke+230		
	Vertical installation	Stroke+275		
Maximum outside dimension of body cross-section		W55xH56mm		
Cable length (m)		Standard : 1 / Option : 3, 5, 10		

1: Positioning repeatability in one direction
2: When the stroke is longer than 650 mm , the ball screw may
resonate depending on the moving range (critical speed). In that
case, reduce the speed by referring to the maximum speeds shown in the table under the dimensional drawing

Horizontal installation (Unit: mm)
Wall installation (Unit: mm)
Vertical installation (Unit: mm)

		A	B	C
$\begin{aligned} & \hline \mathbf{5} \\ & \stackrel{0}{N} \\ & \hline 0 \end{aligned}$	2 kg	413	139	218
	4 kg	334	67	120
	4 kg	347	72	139
	6 kg	335	47	95
$\begin{aligned} & \stackrel{5}{8} \\ & \stackrel{\circ}{\circ} \end{aligned}$	4 kg	503	78	165
	8 kg	332	37	79
	10kg	344	29	62

Distance from center of slider upper surface to conveyor center-of-gravity at a guide service life of $10,000 \mathrm{~km}$ (Service life is calculated for 600 mm stroke models).

SS05

Effective stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	Stop positions are determined by the mechanical stoppers at both ends. Secure the cable with a tie-band 100 mm or less from unit's end face to prevent the cable from being subjected to excessive oads. The cable's minimum bend radius is R30. These are the weights without a brake. The weights are 0.2 kg heavier when equipped with a brake. When the stroke is longer than 650 mm , the ball screw may resonate depending on the moving range (critical speed). In that case, adjust to reduce the speed on the program by referring to the maximum speeds shown in the table at the left.
L		280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	
A		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
B		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
C		100	150	200	250	300	350	400	450	500	500	500	500	500	500	500	500	
Weight (kg) (See note 4)		2.1	2.3	2.5	2.7	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0	
Maximum speed for each stroke ($\mathrm{mm} / \mathrm{sec}$) (Note 5)	Lead 20	1000												933	833	733	633	
	Lead 12	600												560	500	440	380	
	Lead 6	300												280	250	220	190	
	Speed setting	-												93\%	83\%	73\%	63\%	

1: Brake-equipped models can be selected only when the lead is 12 mm or 6 mm .
*2: The robot cable is flexible and resists bending.

Basic specifications				
Motor		$42 \square$ Step motor		
Repeated positioning accuracy ${ }^{* 1}$ (mm)		± 0.02		
Deceleration mechanism		Ball screw $\phi 12$ (Class C10)		
Ball screw lead (mm)		20	12	6
Maximum speed (mm/sec)	Horizontal installation	1000	600	300
	Vertical installation	-	500	250
Maximum payload (kg)	Horizontal installation	6	8	12
	Vertical installation	-	2	4
Max. pressing force (N)		36	60	120
Stroke (mm)		50 to 800 (50 pitch)		
Overall length (mm)	Horizontal installation	Stroke+286		
	Vertical installation	Stroke+331		
Maximum outside dimension of body cross-section		W55xH56mm		
Cable length (m)		Standard : 1 / Option : 3, 5, 10		
*1: Positioning repeatability in one direction. *2: When the stroke is longer than 650 mm , the ball screw may resonate depending on the moving range (critical speed). In that case, reduce the speed by referring to the maximum speeds shown in the table under the dimensional drawing.				

 $10,000 \mathrm{~km}$ (Service life is calculated for 600 mm stroke models).

SS05H

Effective	stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	Stop positions are determined by the mechanical stoppers at both ends. Secure the cable with a tie-band 100 mm or less from unit's end face to prevent the cable from being subjected to excessive loads. The cable's minimum bend radius is R30. These are the weights without a brake. The weights are 0.2 kg heavier when equipped with a brake. When the stroke is longer than 650 mm , the ball screw may resonate depending on the moving range (critical speed). In that case, adjust to reduce the speed on the program by referring to the maximum speeds shown in the table at the left.
L		336	386	436	486	536	586	636	686	736	786	836	886	936	986	1036	1086	
A		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
B		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
C		100	150	200	250	300	350	400	450	500	500	500	500	500	500	500	500	
Weight (kg) ((See note 4)	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.5	4.7	4.9	5.1	5.3	
Maximum speed for each stroke (mm / sec) (Note 5)	Lead 20	1000												933	833	733	633	
	Lead 12 (Horizontal)	600												560	500	440	380	
	Lead 12 (Vertical)	500														440	380	
	Lead 6 (Horizontal)	300												280	250	220	190	
	Lead 6 (Vertical)	250														220	190	

OCE compliance

Ordering Method

$\underset{\text { Robot }}{204}$

Type : Straight

*1: The robot cable is flexible and resists bending

Basic specifications				
Motor		$42 \square$ Step motor		
Repeated positioning accuracy ${ }^{* 1}(\mathrm{~mm})$		± 0.02		
Deceleration mechanism		Ball screw ${ }^{\text {¢ }}$ (Class C10)		
Maximum motor torque		0.27		
Ball screw lead (mm)		12	6	2
Maximum speed (mm/sec)		600	300	100
Maximum payload (kg)	Horizontal installation	2	4	6
	Vertical installation	1	2	4
Max. pressing force (N)		45	90	150
Stroke (mm)		50 to 400 (50 pitch)		
Overall length (mm)	Horizontal installation	Stroke+216		
	Vertical installation	Stroke+261		
Maximum outside dimension of body cross-section		W49×H59mm		
Cable length (m)		Standard : 1 / Option : 3, 5		
Cleanliness class		CLASS 10*2		
Suction amount Air		Lead 12	Lead 6	Lead 2
		50	30	15

*1: Positioning repeatability in one direction.
${ }^{*} 2$: Per $1 \mathrm{cf}(0.1 \mu \mathrm{~m}$ base), when suction blower is used
\square Static loading moment

Vertical installation (Unit: mm)			
		A	

		A	B	C
9 $\stackrel{0}{2}$ $\stackrel{2}{N}$	1 kg	807	218	292
	2 kg	667	107	152
$\begin{aligned} & \text { - } \\ & \text { 흥 } \end{aligned}$	2 kg	687	116	169
	3 kg	556	76	112
	4 kg	567	56	84
$\begin{aligned} & \bar{\circ} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	4 kg	869	61	92
	6 kg	863	40	60

Wall installation (Unit: mm)

* Distance from center of slider upper surface to conveyor center-of-gravity at a guide service life o $10,000 \mathrm{~km}$ (Service life is calculated for 400 mm stroke models).

SSC04

Effective stroke	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$
L	266	316	366	416	466	516	566	$\mathbf{N 1 6}$
Note 1. Stop positions are determined by the mechanical stoppers at both ends.								
Note 2. Either right or left can be selected for the installation direction for 6 suction air coupler.								
This drawing shows the RJ (standard) direction of air coupler installation.								

OCE compliance

Ordering Method

SSC05

1: The robot cable is flexible and resists bending

Basic specifications				
Motor		$42 \square$ Step motor		
Repeated positioning accuracy ${ }^{* 1}$ (mm)		± 0.02		
Deceleration mechanism		Ball screw $\phi 12$ (Class C10)		
Maximum motor torque		0.27		
Ball screw lead (mm)		20	12	6
Maximu mspeed (mm/sec)*2		1000	600	300
Maximum payload (kg)	Horizontal installation	4	6	10
	Vertical installation	-	1	2
Max. pressing force (N)		27	45	90
Stroke (mm)		50 to 800 (50 pitch)		
Overall length (mm)	Horizontal installation	Stroke+230		
	Vertical installation	Stroke+275		
Maximum outside dimension of body cross-section		W55xH56mm		
Cable length (m)		Standard : 1 / Option : 3,5		
Cleanliness class		CLASS 10*3		
Suction amount Air		Lead 20	Lead 6	Lead 2
		80	50	30
*1: Positioning repeatability in one direction. *2: When the stroke is longer than 650 mm , the ball screw may resonate depending on the moving range (critical speed). In that case, reduce the speed by referring to the maximum speeds shown in the table under the dimensional drawing. *3: Per 1cf ($0.1 \mu \mathrm{~m}$ base), when suction blower is used.				

SSC05

Effective stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	Note 1. Stop positions are determined by the mechanical stoppers at both ends.
L		280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	Note 2. Either right or left can be selected for the installation
A		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	This drawing shows the RJ (standard) direction of air
B		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Note 3. Soupler installation. Se the cable with a tie-band 100 mm or less
C		100	150	200	250	300	350	400	450	500	500	500	500	500	500	500	500	from unit's end face to prevent thecable from being subjected to excessive loads.
Weight (kg) (See note 5)		2.1	2.3	2.5	2.7	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0	Note 4. The cable's minimum bend radius is R30.
Maximum speed for each stroke ($\mathrm{mm} / \mathrm{sec}$) (Note 6)	Lead 20	1000												933	833	733	633	Note 5. These are the weights without a brake.The weights are 0.2 kg heavier when equipped with a brake.
	Lead 12	600												560	500	440	380	Note 6 . When the stroke is longer than 650 mm , the ball screw may resonate depending on the moving range (critical speed)
	Lead 6	300												280	250	220	190	In that case, adjust to reduce the speed on the program by referring to the maximum speeds shown in the table at the left.

Ordering Method

*1: The robot cable is flexible and resists bending.

Basic specifications				
Motor		$42 \square$ Step motor		
Repeated positioning accuracy ${ }^{* 1}$ (mm)		± 0.02		
Deceleration mechanism		Ball screw $\$ 12$ (Class C10)		
Maximum motor torque		0.47		
Ball screw lead (mm)		20	12	6
Maximum speed (mm/sec)	Horizontal installation	1000	600	300
	Vertical installation		500	250
Maximum payload (kg)	Horizontal installation	6	8	12
	Vertical installation		2	4
Max. pressing force (N)		36	60	120
Stroke (mm)		50 to 800 (50 pitch)		
Overall length (mm)	Horizontal installation	Stroke+286		
	Vertical installation	Stroke+331		
Maximum outside dimension of body cross-section		W55xH56mm		
Cable length (m)		Standard : 1 / Option : 3, 5		
Cleanliness class		CLASS 10*3		
Suction amount Air		Lead 20	Lead 6	Lead 2
		80	50	30
*1: Positioning repeatability in one direction. *2: When the stroke is longer than 650 mm , the ball screw may resonate depending on the moving range (critical speed). In that case, reduce the speed by referring to the maximum speeds shown *3: Per $1 \mathrm{cf}(0.1 \mu \mathrm{~m}$ base $)$, when suction blower is used.				

Horizontal installation (Unit: mm)
Wall
Wall installation (Unit: mm
Vertical installation (Unit: mm)

		A	B	C			A	B	C			A	C
W $\stackrel{0}{0}$ 0	2kg	599	225	291	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{2} \end{aligned}$	2kg	262	203	554	$\begin{aligned} & \hline \left.\begin{array}{l} 0 \\ \hline 0 . \\ i \end{array} \right\rvert\, \end{aligned}$	1 kg	458	459
	4 kg	366	109	148		4 kg	118	88	309		2 kg	224	224
	6 kg	352	71	104		6 kg	71	49	262	$\begin{aligned} & \hline \stackrel{5}{8} \\ & \text { on } \end{aligned}$	2 kg	244	245
	4 kg	500	118	179		4 kg	146	96	449		4 kg	113	113

		(Unit: N.m)
MY	MP	MR
32	38	34

SSC05H

YAMAHA MOTOR CO., LTD.
IM Operations
882 Soude, Naka-ku, Hamamatsu, Shizuoka 435-0054, Japan Tel 81-53-460-6103 Fax 81-53-460-6811
URL http://www.yamaha-motor.co.jp/global/industrial/robot/ E-mail robotn@yamaha-motor.co.jp

