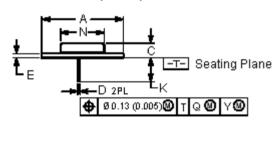
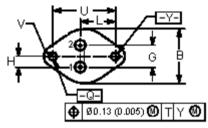
Darlington Transistor

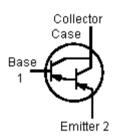

High - current complementary silicon transistors


For use output devices in complementary general purpose amplifier applications

Features:

- + High DC current gain h_{FE} = 1,000 (minimum) at I_{C} 20 A dc
- Monolithic construction with built-in base emitter shunt resistor
- Junction temperature to +200°C

(TO-3)



Style 1: Pin 1. Base 2. Emitter Collector (Cas

Collector (Case)

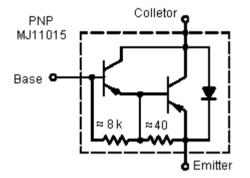
Dimensions	Minimum	Maximum	
А	1.55 (39.37) Reference		
В	-	1.05 (26.67)	
С	0.25 (6.35)	0.335 (8.51)	
D	0.038 (0.97)	0.043 (1.09)	
Е	0.055 (1.4)	0.07 (1.77)	
G	0.43 (10.92) BSC		
Н	0.215 (5.46) BSC		
К	0.44 (11.18)	0.48 (12.19)	
L	0.665 (16.89) BSC		
Ν	-	0.83 (21.08)	
Q	0.151 (3.84)	0.165 (4.19)	
U	1.187 (30.15) BSC		
V	0.131 (3.33)	0.188 (4.77)	
Dimensions : Inches (Millimetre			

30 Amperes Darlington Power Transistors Complementary Silicon 60 - 120 V, 200 W

(TO-3) Case 1-07 Style 1

Maximum Ratings

Rating		Symbol	Value	Unit	
Collector - Emitter Voltage	MJ11015	V _{CEO}	120		
Collector - Base Voltage	MJ11015	Vсв	120	V dc	
Emitter - Base Voltage		V _{EB}	5	-	
Collector Current		Ι _C	30		
Base Current		Ι _Β	1	A dc	
Total Device Dissipation at $T_C = 25$ Derate above 25°C at $T_C = 100$ °C	°C	P _D	200 1.15	W W / °C	
Operating and Storage Junction Temperature Range		T _J , T _{stg}	-55 to +200	°C	



Thermal Characteristics

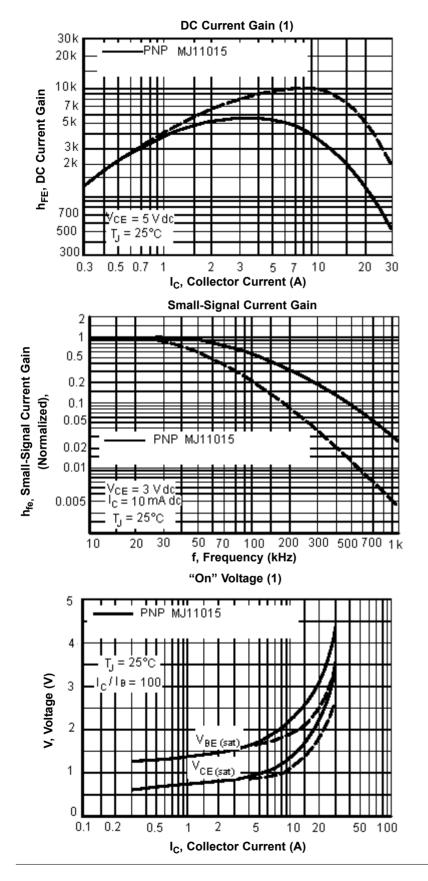
Characteristics	Symbol	Maximum	Unit
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	1.17	°C / W
Maximum Lead Temperature for Soldering Purposes for ≤10 Seconds	TL	275	°C

Stresses exceeding maximum ratings may damage the device. Maximum ratings are stress ratings only. Functional operation above the recommended operating conditions is not implied. Extended exposure to stresses above the recommended operating conditions may affect device reliability

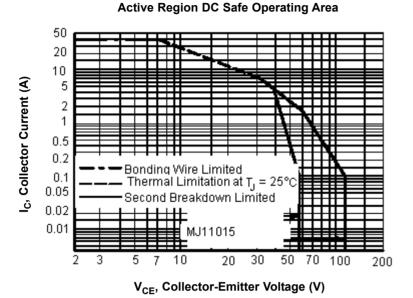
Darlington Circuit Schematic

Electrical Characteristics (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Minimum	Maximum	Unit
Off Characteristics				1	
Collector - Emitter Breakdown Voltage (1) ($I_C = 100 \text{ mA dc}, I_B = 0$)	MJ11015	V (BR) CEO	120	-	V dc
Collector - Emitter Leakage Current (V_{CE} = 120 V dc, R_{BE} = 1 k Ω) (V_{CE} = 120 V dc, R_{BE} = 1 k Ω , T_{C} = 150°C)	MJ11015 MJ11015	I _{CER}	-	1 5	mA dc
Emitter Cut off Current (V _{BE} = 5 V dc, I _C = 0)		I _{EBO}	-	5	
Collector - Emitter Leakage Current ($V_{CE} = 5 V dc, I_B = 0$)		I _{CEO}	-	1	
On Characteristics (1)				L	
DC Current Gain ($I_C = 20 \text{ A dc}, V_{CE} = 5 \text{ V dc}$ ($I_C = 30 \text{ A dc}, V_{CE} = 5 \text{ V dc}$)		h _{FE}	1,000 200		-
Collector - Emitter Saturation Voltage ($I_c = 20 \text{ A dc}, I_B = 200 \text{ mA dc}$) ($I_c = 30 \text{ A dc}, I_B = 300 \text{ mA dc}$)		V _{CE (sat)} -		3 4	V dc
Base - Emitter Saturation Voltage ($I_C = 20 \text{ A dc}, I_B = 200 \text{ mA dc}$) ($I_C = 30 \text{ A dc}, I_B = 300 \text{ mA dc}$)		V _{BE (sat)}	-	- 3.5 5	
Dynamic Characteristics					
Current-Gain Bandwidth Product (I _C = 10 A, V _{CE} = 3 V dc, f = 1 MHz)		h _{fe}	4	-	MHz


(1) Pulse Test: Pulse Width = 300 μ S, Duty Cycle \leq 2%

Darlington Transistor



www.element14.com www.farnell.com www.newark.com

Darlington Transistor

There are two limitations on the power handling ability of a transistor average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operations e.g., the transistor must not be subjected to greater dissipation than the curves indicate.

At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown

Part Number Table

Description	Part Number
Darlington Transistor, TO-3	MJ11015

Important Notice : This data sheet and its contents (the "Information") belong to the members of the Premier Famell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage raising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2012.

